
Structa 0.3 Documentation
Release 0.3

Dave Jones

Oct 28, 2021

CONTENTS

1 Installation 1

2 Getting Started 3

3 Real World Data 11

4 Command Line Reference 19

5 Recipes 23

6 API Reference 25

7 Development 43

8 Changelog 45

9 License 47

Python Module Index 49

Index 51

i

ii

CHAPTER

ONE

INSTALLATION

structa is distributed in several formats. The following sections detail installation on a variety of platforms.

1.1 Ubuntu Linux

For Ubuntu Linux, it is simplest to install from the author’s PPA1 as follows (this also ensures you are kept up to date
as new releases are made):

$ sudo add-apt-repository ppa://waveform/structa
$ sudo apt update
$ sudo apt install structa

If you wish to remove structa:

$ sudo apt remove structa

1.2 Microsoft Windows

Firstly, install a version of Python 32 (this must be Python 3.5 or later), or ensure you have an existing installation of
Python 3.
Ideally, for the purposes of following the Getting Started (page 3) you should add your Python 3 install to the system
PATH variable so that python can be easily run from any command line.
You can install structa with the “pip” tool like so:

C:\Users\me> pip install structa

Upgrading structa can be done via pip too:

C:\Users\me> pip install --upgrade structa

And removal can be performed via pip:

C:\Users\me> pip uninstall structa

1 https://launchpad.net/~waveform/+archive/ppa
2 https://www.python.org/downloads/windows/

1

https://launchpad.net/~waveform/+archive/ppa
https://www.python.org/downloads/windows/

Structa 0.3 Documentation, Release 0.3

1.3 Other Platforms

If your platform is not covered by one of the sections above, structa is available from PyPI and can therefore be
installed with the Python setuptools “pip” tool:

$ pip install structa

On some platforms you may need to use a Python 3 specific alias of pip:

$ pip3 install structa

If you do not have either of these tools available, please install the Python setuptools3 package first.
You can upgrade structa via pip:

$ pip install --upgrade structa

And removal can be performed as follows:

$ pip uninstall structa

3 https://pypi.python.org/pypi/setuptools/

2 Chapter 1. Installation

https://pypi.python.org/pypi/setuptools/

CHAPTER

TWO

GETTING STARTED

Warning: Big fat “unfinished” warning: structa is still very much incomplete at this time and there’s plenty of
rough edges (like not showing CSV column titles).
If you run into unfinished stuff, do check the issues4 first as I may have a ticket for that already. If you run into
genuinely “implemented but broken” stuff, please do file an issue; it’s these things I’m most interested in at this
stage.

Getting the most out of structa is part science, part art. The science part is understanding how structa works and what
knobs it has to twiddle. The art bit is figuring out what to twiddle them to!

2.1 Pre-requisites

You’ll need the following to start this tutorial:
• A structa installation; see Installation (page 1) for more information on this.
• A Python 3 installation; given that structa requires this to run at all, if you’ve got structa installed, you’ve got
this too. However, it’ll help enormously if Python is in your system’s “PATH” so that you can run python scripts
at the command line.

• Some basic command line knowledge. In particular, it’ll help if you’re familiar with shell redirection and
piping5 (note: while that link is on askubuntu.com6 the contents are equally applicable to the vast majority of
UNIX shells, and even to Windows’ cmd!)

2.2 Basic Usage

We’ll start with some basic data structures and see how structa handles them. The following Python script dumps a
list of strings representing integers to stdout in JSON format:

Listing 1: str-nums.py
import sys
import json

json.dump([str(i) for i in range(1000)] * 3, sys.stdout)

This produces output that looks (partially) like this:

4 https://github.com/waveform80/structa/issues
5 https://askubuntu.com/a/172989
6 https://askubuntu.com/

3

https://github.com/waveform80/structa/issues
https://askubuntu.com/a/172989
https://askubuntu.com/a/172989
https://askubuntu.com/

Structa 0.3 Documentation, Release 0.3

["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25",
"26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37",
"38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49",
"50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61",
"62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73",
"74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85",
"86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97",
"98", "99", "100", "101", "102", "103", "104", "105", "106", "107", "108",
"109", "110", "111", "112", "113", "114", "115", "116", "117", "118",
"119", "120", "121", "122", "123", "124", "125", "126", "127", "128",
"129", "130",
// lots more output...
]

We can capture the output in a file and pass this to structa:

$ python3 str-nums.py > str-nums.json
$ structa str-nums.json
[str of int range=0..999 pattern="d"]

Alternatively, we can pipe the output straight to structa:

$ python3 str-nums.py | structa
[str of int range=0..999 pattern="d"]

The output shows that the data contains a list (indicated by the square-brackets surrounding the output) of strings of
integers (“str of int”), which have values between 0 and 999 (inclusive). The “pattern” at the end indicates that the
strings are in decimal (“d”) form (structa would also recognize octal, “o”, and hexadecimal “x” forms of integers).

2.3 Bad Data (--bad-threshold)

Let’s see how structa handles bad data. We’ll add a non-numeric string into our list of numbers:

Listing 2: bad-nums.py
import sys
import json

json.dump(['foo'] + [str(i) for i in range(1000)] * 3, sys.stdout)

What does structa do in the presence of this “corrupt” data?

$ python3 bad-nums.py | structa
[str of int range=0..999 pattern="d"]

Apparently nothing! It may seem odd that structa raised no errors, or even warnings when encountering subtly
incorrect data. However, structa has a “bad threshold” setting (structa --bad-threshold (page 20)) which
means not all data in a given sequence has to match the pattern under test.
This setting defaults to 1% (or 0.01) meaning that up to 1% of the values can fail to match and the pattern will still
be considered valid. If we lower the bad threshold to zero, this is what happens:

$ python3 bad-nums.py | structa --bad-threshold 0
[str range="0".."foo"]

It’s still recognized as a list of strings, but no longer as string representations of integers.
How about mixing types? The following script outputs our errant string, “foo”, along with a list of numbers. However,
note that this time the numbers are integers, not strings of integers. In other words we have a list of a string, and lots

4 Chapter 2. Getting Started

Structa 0.3 Documentation, Release 0.3

of integers:

Listing 3: bad-types.py
import sys
import json

json.dump(['foo'] + list(range(1000)) * 3, sys.stdout)

$ python3 bad-types.py | structa
[value]

In this case, even with the default 1% bad threshold, structa doesn’t exclude the bad data; the analysis simply returns
it as a list of mixed “values”.
This is because structa assumes that the types of data are at least consistent and correct, under the assumption that if
whatever is generating your data hasn’t even got the data types right, you’ve got bigger problems! The bad threshold
mechanism only applies to bad data within a homogenous type (typically bad string representations of numeric or
boolean types).

2.4 Missing Data (--empty-threshold)

Another type of “bad” data commonly encountered is empty strings which are typically used to represent missing
data, and (predictably) structa has another knob that can be twiddled for this: structa --empty-threshold
(page 20). The following script generates a list of strings of integers in which most of the strings (~70%) are blank:

Listing 4: mostly-blank.py
import sys
import json
import random

json.dump([
'' if random.random() < 0.7 else str(random.randint(0, 100))
for i in range(10000)

], sys.stdout)

Despite the vast majority of the data being blank, structa handles this as normal:

$ python3 mostly-blank.py | structa
[str of int range=0..100 pattern="d"]

This is because the default for structa --empty-threshold (page 20) is 99% or 0.99. If the proportion of
blank strings in a field exceeds the empty threshold, the field will simply be marked as a string without any further
processing. Hence, when we re-run this script with the setting turned down to 50%, the output changes:

$ python3 mostly-blank.py | structa --empty-threshold 50%
[str range="".."99"]

Note: For those slightly confused by the above output: structa hasn’t lost the “100” value, but because it’s now
considered a string (not a string of integers), “100” sorts before “99” alphabetically.

It is also worth nothing that, by default, structa strips whitespace from strings prior to analysis. This is probably not
necessary for the vast majority of modern datasets, but it’s a reasonably safe default, and can be controlled with the
structa --strip-whitespace (page 20) and structa --no-strip-whitespace (page 20) options
in any case.

2.4. Missing Data (--empty-threshold) 5

Structa 0.3 Documentation, Release 0.3

2.5 Fields or Tables (--field-threshold)

The next major knob that can be twiddled in structa is the structa --field-threshold (page 19). This
is used to distinguish between mappings that act as a “table” (mapping keys to records) and mappings that act as a
record (mapping field-names, typically strings, to their values).
To illustrate the difference between these, consider the following script:

Listing 5: simple-fields.py
import sys
import json
import random

json.dump({
str(flight_id): {

"flight_id": flight_id,
"passengers": random.randint(50, 200),
"from": random.choice([

"MAN", "LON", "LHR", "ABZ", "AMS", "AUS", "BCN",
"BER", "BHX", "BRU", "CHI", "ORK", "DAL", "EDI",

]),
}
for flight_id in range(200)

}, sys.stdout)

The generates a JSON file containing a mapping of mappings which looks something like this snippet (but with a lot
more output):

{
"0": { "flight_id": 0, "passengers": 53, "from": "BHX" },
"1": { "flight_id": 1, "passengers": 157, "from": "AMS" },
"2": { "flight_id": 2, "passengers": 118, "from": "DAL" },
"3": { "flight_id": 3, "passengers": 111, "from": "MAN" },
"4": { "flight_id": 4, "passengers": 192, "from": "BRU" },
"5": { "flight_id": 5, "passengers": 69, "from": "DAL" },
"6": { "flight_id": 6, "passengers": 147, "from": "LON" },
"7": { "flight_id": 7, "passengers": 187, "from": "LON" },
"8": { "flight_id": 8, "passengers": 171, "from": "AMS" },
"9": { "flight_id": 9, "passengers": 89, "from": "DAL" },
"10": { "flight_id": 10, "passengers": 169, "from": "LHR" },
// lots more output...

}

The outer mapping is what structa would consider a “table” since it maps keys (in this case a string representation
of an integer) to records. The inner mappings are what structa would consider “records” since they map a relatively
small number of field names to values.

Note: Record fields don’t have to be simple scalar values (although they are here); they can be complex structures
including lists or indeed further embedded records.

If structa finds mappings with more keys than the threshold, those mappings will be treated as tables. However,
if mappings are found with fewer (or equal) keys to the threshold, they will be analyzed as records. It’s a rather
arbitrary value that (unfortunately) usually requires some fore-knowledge of the data being analyzed. However, it’s
usually quite easy to spot when the threshold is wrong, as we’ll see.
First, let’s take a look at what happens when the threshold is set correctly. When passed to structa, with the default
field threshold of 20, we see the following output:

6 Chapter 2. Getting Started

Structa 0.3 Documentation, Release 0.3

$ python3 simple-fields.py | structa
{

str of int range=0..199 pattern="d": {
'flight_id': int range=0..199,
'from': str range="ABZ".."ORK" pattern="Iii",
'passengers': int range=50..200

}
}

This indicates that structa has recognized the data as consisting of a mapping (indicated by the surrounding braces),
which is keyed by a decimal string representation of an integer (in the range 0 to 199), and the values of which are
another mapping with the keys “flight_id”, “from”, and “passengers”.
The reason the inner mappings were treated as a set of records was because all those mappings had less than 20
entries. The outer mapping had more than 20 entries (200 in this case) and thus was treated as a table.
What happens if we force the field threshold down so low that the inner mappings are also treated as a table?

$ python3 simple-fields.py | structa --field-threshold 2
{

str of int range=0..199 pattern="d": { str range="flight_id".."passengers":␣
↪→value }
}

The inner mappings are now defined simply as mappings of strings (in the range “flight_id” to “passengers”, sorted
alphabetically) which map to “value” (an arbitrary mix of types). Anytime you see a mapping of { str: value
} in structa’s output, it’s a fairly good clue that structa --field-threshold (page 19) might be too low.

2.6 Merging Structures (--merge-threshold)

The final major knob available for twiddling is the structa --merge-threshold (page 20) which dictates
how similar record mappings have to be in order to be considered for merging. This only applies to mappings at the
same “level” with similar (but not necessarily perfectly identical) structures.
To illustrate, consider the following example script:

Listing 6: merge-dicts.py
import sys
import json
import random

airports = {
"MAN", "LON", "LHR", "ABZ", "AMS", "AUS", "BCN",
"BER", "BHX", "BRU", "CHI", "ORK", "DAL", "EDI",

}

facilities = [
"WiFi", "Shopping", "Conferences", "Chapel", "Parking",
"Lounge", "Spotters Area", "Taxi Rank", "Train Station",
"Tram Stop", "Bus Station", "Duty Free",

]

data = {
airport: {

"code": airport,
"facilities": random.sample(

facilities, random.randint(3, len(facilities))),
"terminals": random.randint(1, 4),
"movements": random.randint(10000, 300000),

(continues on next page)

2.6. Merging Structures (--merge-threshold) 7

Structa 0.3 Documentation, Release 0.3

(continued from previous page)
"passengers": random.randint(1000000, 30000000),
"cargo": random.randint(10000, 1000000),

}
for airport in airports

}

for entry in data.values():
Exclude reporting terminals if the airport only has one
if entry['terminals'] == 1:

del entry['terminals']
Exclude some other stats semi-randomly
if random.random() > 0.7:

del entry['movements']
if random.random() > 0.9:

del entry['cargo']

json.dump(data, sys.stdout)

In keeping with the prior examples, this generates a list of airports with associated statistics. When we run the results
through structa they seem to produce sensible output:

$ python3 merge-dicts.py | structa
{

str range="ABZ".."ORK" pattern="Iii": {
'cargo'?: int range=55.0K..949.1K,
'code': str range="ABZ".."ORK" pattern="[A-EL-MO][A-EHMORU][IK-LNR-SUXZ]",
'facilities': [str range="Bus Station".."WiFi"],
'movements'?: int range=10.0K..295.7K,
'passengers': int range=1.0M..24.9M,
'terminals'?: int range=2..4

}
}

However, there are several things to note about the data:
• The number of top-level entries (the airport codes) is less than the default field threshold (20). This means that
the “outer” mapping will initially be treated as a record rather than a table (see the explanation of --field-
threshold above).

• In some entries, statistics are missing. When “terminals” would be 1, it’s excluded, and 30% and 10% of entries
will be missing their “movements” and “cargo” stats respectively.

• The “code”, “facilities”, and “passengers” entries are always present out of a total of 6 fields that could be
present. This means that at least 50% of all the fields are guaranteed to be present, which is the default level
of --merge-threshold.

As noted above, structa’s initial pass will treat the outer mapping as a record so each airport will be analyzed as
a separate entity. After this phase a first merge pass will run, which will compare all the airport records. After
concluding that all contain at least 50% of the same fields as the rest, and that all field values found are compatible,
those rows will be merged. What happens if we raise the merge threshold to 100%, which would require that every
single airport record shared exactly the same fields?

$ python3 docs/examples/merge-dicts.py | structa --merge-threshold 100%
{

'ABZ': {
'cargo': int range=192.6K,
'code': str range="ABZ" pattern="ABZ",
'facilities': [str range="Bus Station".."WiFi"],
'passengers': int range=27.5M,
'terminals': int range=4

},
'AMS': {

(continues on next page)

8 Chapter 2. Getting Started

Structa 0.3 Documentation, Release 0.3

(continued from previous page)
'cargo': int range=606.4K,
'code': str range="AMS" pattern="AMS",
'facilities': [str range="Bus Station".."WiFi"],
'movements': int range=132.5K,
'passengers': int range=4.8M,
'terminals': int range=3

},
'AUS': {

'cargo': int range=607.4K,
'code': str range="AUS" pattern="AUS",
'facilities': [str range="Bus Station".."WiFi"],
'movements': int range=212.2K,
'passengers': int range=13.7M

},
...

A whole lot of output! When you get excessively large output consisting of largely (but not completely) similar
records, it’s a reasonable sign that structa --merge-threshold (page 20) is set too high.
That said, the merge threshold is fairly forgiving. The specific algorithm used is as follows:

• For two given mappings, find the length (number of fields) of the shortest mapping.
• Calculate the minimum required number of common fields as the merge threshold percentage of the shortest
length. For example, if the shortest mapping contains 8 fields, and the merge threshold is 50%, then there must
be at least 4 common fields.

• Note that in the case that one side is an empty mapping this will always permit the match as at least 0 common
fields will be required percentage of the shortest length.

2.7 Other Switches

There are quite a few other switches in structa, but all are less important than the four covered in the prior sections. The
rest largely have to do with specific formats (structa --csv-format (page 20) for CSV files, structa --
no-json-strict (page 21) for JSONfiles), the character encoding of files (structa --encoding (page 19),
structa --encoding-strict (page 19)), or tweaking the style of the output (structa --show-count
(page 20), structa --show-lengths (page 20)).

2.7.1 Integer Handling

However, there are a couple that may be important for specific types of data. The first is structa --max-
numeric-len (page 20) which dictates the maximum number of digits structa will consider as a number. This
defaults to 30 which is more than sufficient to represent all 64-bit integer values (which only require 20 digits), with
some lee-way for data that includes large integers (which Python handles happily).
However, the default is deliberately lower than 32 because at that point, data which includes hex-encoded hash values
(MD57, SHA18, etc.) typically wind up mis-representing those hashes as literal integers (which, technically, they are,
but that’s not typically how users wish hash values to be interpreted).

7 https://en.wikipedia.org/wiki/MD5
8 https://en.wikipedia.org/wiki/SHA-1

2.7. Other Switches 9

https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1

Structa 0.3 Documentation, Release 0.3

2.7.2 Date Handling

The other important switches are those used in the detection of dates encoded as numbers: structa --min-
timestamp (page 20) and structa --max-timestamp (page 20). When dates are encoded as (potentially
fractional) day-offsets from the UNIX epoch (the 1st January, 1970), how does structa determine that it’s looking at
a set of dates rather than a set of numbers?
In a typical set of (arbitrary) numbers, it’s quite normal to find “0” or “1” commonly represented, or for the set of
numbers to span over a large range (consider file-sizes which might span over millions or billions of bytes). However,
most date-based sets, don’t tend to include values around the 1st or 2nd of January, 1970 (most data that’s dealt with
is, to some degree, fairly contemporary), and moreover tends to cluster around values that vary by no more than a
few thousand (after all 3000 is enough to represent nearly a decade’s worth of days).
Thus if we find that all numbers in a given set fall within some “reasonable” limits (structa defaults to 20 years prior,
and 10 years after the current date) it’s a reasonable guess that we’re looking at dates encoded as numbers rather than
an arbitrary set of numbers.

2.8 Conclusion

At this point, you should have a pretty good idea of the major controls that structa provides, what they do, and the
circumstances under which you will need to fiddle with them. The next tutorial (page 11) goes through a variety of
scenarios with some datasets that are closer to the sort of size and complexity one might encounter in the real world.
However, it won’t be introducing any new functionality that we haven’t covered above and at this point you may simply
want to take structa for a spin with your own datasets.

10 Chapter 2. Getting Started

CHAPTER

THREE

REAL WORLD DATA

Warning: Big fat “unfinished” warning: structa is still very much incomplete at this time and there’s plenty of
rough edges (like not showing CSV column titles).
If you run into unfinished stuff, do check the issues9 first as I may have a ticket for that already. If you run into
genuinely “implemented but broken” stuff, please do file an issue; it’s these things I’m most interested in at this
stage.

3.1 Pre-requisites

You’ll need the following to start this tutorial:
• A structa installation; see Installation (page 1) for more information on this.
• A Python 3 installation; given that structa requires this to run at all, if you’ve got structa installed, you’ve got
this too. However, it’ll help enormously if Python is in your system’s “PATH” so that you can run python scripts
at the command line.

• The scipy10 library must be installed for the scripts we’re going to be using to generate data. On Debian/Ubuntu
systems you can run the following:

$ sudo apt install python3-scipy

On Windows, or if you’re running in a virtual environment, you should run the following:

$ pip install scipy

• Some basic command line knowledge. In particular, it’ll help if you’re familiar with shell redirection and
piping11 (note: while that link is on askubuntu.com12 the contents are equally applicable to the vast majority
of UNIX shells, and even to Windows’ cmd!)

9 https://github.com/waveform80/structa/issues
10 https://scipy.org/
11 https://askubuntu.com/a/172989
12 https://askubuntu.com/

11

https://github.com/waveform80/structa/issues
https://scipy.org/
https://askubuntu.com/a/172989
https://askubuntu.com/a/172989
https://askubuntu.com/

Structa 0.3 Documentation, Release 0.3

3.2 “Real World” Data

For this tutorial, we’ll use a custom made data-set which will allow us to tweak things and see what’s going on under
structa’s hood a bit more easily.
The following script generates a fairly sizeable JSON file (~11MB) apparently recording various air quality readings
from places which bear absolutely no resemblance whatsoever to my adoptive city (ahem):

Listing 1: air-quality.py
import sys
import json
import random
import datetime as dt
from scipy.stats import skewnorm

readings = {
stat: (min, max),
'O3': (0, 50),
'NO': (0, 200),
'NO2': (0, 100),
'PM10': (0, 100),
'PM2.5': (0, 100),

}

locations = {
location: {stat: (skew, scale), ...}
'Mancford Peccadillo': {

'O3': (0, 1),
'NO': (5, 1),
'NO2': (0, 1),
'PM10': (10, 3),
'PM2.5': (10, 1),

},
'Mancford Shartson': {

'O3': (-10, 1),
'NO': (10, 1),
'NO2': (0, 1),

},
'Salport': {

'NO': (10, 1),
'NO2': (-10, 1/2),
'PM10': (5, 1/2),
'PM2.5': (5, 1/2),

},
'Prestchester': {

'O3': (1, 1),
'NO': (5, 1/2),
'NO2': (0, 1),
'PM10': (5, 1/2),
'PM2.5': (10, 1/2),

},
'Blackshire': {

'O3': (-10, 1),
'NO': (50, 1/2),
'NO2': (10, 1/2),
'PM10': (10, 1/2),
'PM2.5': (10, 1/2),

},
'St. Wigpools': {

'O3': (0, 1),
'NO': (10, 1),

(continues on next page)

12 Chapter 3. Real World Data

Structa 0.3 Documentation, Release 0.3

(continued from previous page)
'NO2': (5, 3/4),
'PM10': (5, 1/2),
'PM2.5': (5, 1/2),

},
}

def skewfunc(min, max, a=0, scale=1):
s = skewnorm(a)
real_min = s.ppf(0.0001)
real_max = s.ppf(0.9999)
real_range = real_max - real_min
res_range = max - min
def skewrand():

return min + res_range * scale * (s.rvs() - real_min) / real_range
return skewrand

generators = {
location: {

reading: skewfunc(read_min, read_max, skew, scale)
for reading, params in loc_readings.items()
for read_min, read_max in (readings[reading],)
for skew, scale in (params,)

}
for location, loc_readings in locations.items()

}

timestamps = [
dt.datetime(2020, 1, 1) + dt.timedelta(hours=n)
for n in range(10000)

]

data = {
location: {

'euid': 'GB{:04d}A'.format(random.randint(200, 2000)),
'ukid': 'UKA{:05d}'.format(random.randint(100, 800)),
'lat': random.random() + 53.0,
'long': random.random() - 3.0,
'alt': random.randint(5, 100),
'readings': {

reading: {
timestamp.isoformat(): loc_gen()
for timestamp in timestamps

}
for reading, loc_gen in loc_gens.items()

}
}
for location, loc_gens in generators.items()

}

json.dump(data, sys.stdout)

If you run the script it will output JSON on stdout, which you can redirect to a file (or straight to structa, but given
the script takes a while to run you may wish to capture the output to a file for experimentation purposes). Passing the
output to structa should produce output something like this:

$ python3 air-quality.py > air-quality.json
$ structa air-quality.json
{

str range="Blackshire".."St. Wigpools": {
'alt': int range=31..85,
'euid': str range="GB1012A".."GB1958A" pattern="GB1[0-139][13-58][2-37-9]A

↪→", (continues on next page)

3.2. “Real World” Data 13

Structa 0.3 Documentation, Release 0.3

(continued from previous page)
'lat': float range=53.29812..53.6833,
'long': float range=-2.901626..-2.362118,
'readings': {

str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..
↪→2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-5.634479..335.6384␣
↪→}

},
'ukid': str range="UKA00129".."UKA00713" pattern="UKA00[1-24-57][1-38][0-

↪→13579]"
}

}

Note: It should be notable that the output of structa looks rather similar to the end of the air-quality.py script,
where the “data” variable that is ultimately dumped is constructed. This neatly illustrates the purpose of structa: to
summarize repeating structures in a mass of hierarchical data.

Looking at this output we can see that the data consists of a mapping (or Javascript “object”) at the top level, keyed
by strings in the range “Blackshire” to “St. Wigpools” (when sorted).
Under these keys are more mappings which have six keys (which structa has displayed in alphabetical order for ease
of reading):

• alt which maps to an integer in some range (in the example above 31 to 85, but this will likely be different for
you)

• euid which maps to a string which always started with “GB” and is followed by several numerals
• lat which maps to a floating point value around 53
• long which maps to another floating point roughly around -2
• ukid which maps to a string always starting with UKA00 followed by several numerals
• And finally, readings which maps to another dictionary of strings …
• Which maps to another dictionary which is keyed by timestamps in string format, which map to floating point
values

If you have a terminal capable of ANSI codes, you may note that types are displayed in a different color (to distinguish
them from literals like the “ukid” and “euid” keys), as are patterns within fixed length strings, and various keywords
like “range=”.

Note: You may also notice that several of the types (definitely the outer “str”, but possibly other types within the
top-level dictionary, like lat/long) are underlined. This indicates that these values are unique throughout the entire
dataset, and thus potentially suitable as top-level keys if entered into a database.
Just because you can use something as a unique key, however, doesn’t mean you should (floating point values being
a classic example).

14 Chapter 3. Real World Data

Structa 0.3 Documentation, Release 0.3

3.3 Optional Keys

Let’s explore how structa handles various “problems” in the data. Firstly, we’ll make a copy of our script and add a
chunk of code to remove approximately half of the altitude readings:

$ cp air-quality.py air-quality-opt.py
$ editor air-quality-opt.py

Listing 2: air-quality-opt.py
data = {

location: {
'euid': 'GB{:04d}A'.format(random.randint(200, 2000)),
'ukid': 'UKA{:05d}'.format(random.randint(100, 800)),
'lat': random.random() + 53.0,
'long': random.random() - 3.0,
'alt': random.randint(5, 100),
'readings': {

reading: {
timestamp.isoformat(): loc_gen()
for timestamp in timestamps

}
for reading, loc_gen in loc_gens.items()

}
}
for location, loc_gens in generators.items()

}

for location in data:
if random.random() < 0.5:

del data[location]['alt']

json.dump(data, sys.stdout)

What does structa make of this?

$ python3 air-quality-opt.py > air-quality-opt.json
$ structa air-quality-opt.json
{

str range="Blackshire".."St. Wigpools": {
'alt'?: int range=31..85,
'euid': str range="GB1012A".."GB1958A" pattern="GB1[0-139][13-58][2-37-9]A

↪→",
'lat': float range=53.29812..53.6833,
'long': float range=-2.901626..-2.362118,
'readings': {

str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..
↪→2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-5.634479..335.6384␣
↪→}

},
'ukid': str range="UKA00129".."UKA00713" pattern="UKA00[1-24-57][1-38][0-

↪→13579]"
}

}

Note that a question-mark has now been appended to the “alt” key in the second-level dictionary (if your terminal
supports color codes, this should appear in red). This indicates that the “alt” key is optional and not present in every
single dictionary at that level.

3.3. Optional Keys 15

Structa 0.3 Documentation, Release 0.3

3.4 “Bad” Data

Next, we’ll make another script (a copy of air-quality-opt.py), which adds some more code to “corrupt”
some of the timestamps:

$ cp air-quality-opt.py air-quality-bad.py
$ editor air-quality-bad.py

Listing 3: air-quality-bad.py
for location in data:

if random.random() < 0.5:
reading = random.choice(list(data[location]['readings']))
date = random.choice(list(data[location]['readings'][reading]))
value = data[location]['readings'][reading].pop(date)
Change the date to the 31st of February...
data[location]['readings'][reading]['2020-02-31T12:34:56'] = value

json.dump(data, sys.stdout)

What does structa make of this?

$ python3 air-quality.py > air-quality-bad.json
$ structa air-quality-bad.json
{

str range="Blackshire".."St. Wigpools": {
'alt'?: int range=31..85,
'euid': str range="GB1012A".."GB1958A" pattern="GB1[0-139][13-58][2-37-9]A

↪→",
'lat': float range=53.29812..53.6833,
'long': float range=-2.901626..-2.362118,
'readings': {

str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..
↪→2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-5.634479..335.6384␣
↪→}

},
'ukid': str range="UKA00129".."UKA00713" pattern="UKA00[1-24-57][1-38][0-

↪→13579]"
}

}

Apparently nothing! It may seem odd that structa raised no errors, or even warnings when encountering subtly
incorrect data. One might (incorrectly) assume that structa just thinks anything that vaguely looks like a timestamp
in a string is such.
For the avoidance of doubt, this is not the case: structa does attempt to convert timestamps correctly and does not
think February 31st is a valid date (unlike certain databases!). However, structa does have a “bad threshold” setting
(structa --bad-threshold (page 20)) which means not all data in a given sequence has to match the pattern
under test.

16 Chapter 3. Real World Data

Structa 0.3 Documentation, Release 0.3

3.5 Multiple Inputs

Time for another script (based on a copy of the priorair-quality-bad.py script), which produces each location
as its own separate JSON file:

$ cp air-quality-bad.py air-quality-multi.py
$ editor air-quality-multi.py

Listing 4: air-quality-multi.py
for location in data:

filename = location.lower().replace(' ', '-').replace('.', '')
filename = 'air-quality-{filename}.json'.format(filename=filename)
with open(filename, 'w') as out:

json.dump({location: data[location]}, out)

We can pass all the files as inputs to structa simultaneously, which will cause it to assume that they should all be
processed as if they have comparable structures:

$ python3 air-quality-multi.py
$ ls *.json
air-quality-blackshire.json air-quality-prestchester.json
air-quality-mancford-peccadillo.json air-quality-salport.json
air-quality-mancford-shartson.json air-quality-st-wigpools.json
$ structa air-quality-*.json
{

str range="Blackshire".."St. Wigpools": {
'alt': int range=15..92,
'euid': str range="GB0213A".."GB1029A" pattern="GB[01][028-9][1-26-7][2-

↪→379]A",
'lat': float range=53.49709..53.98315,
'long': float range=-2.924566..-2.021445,
'readings': {

str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..
↪→2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-2.982586..327.4161␣
↪→}

},
'ukid': str range="UKA00148".."UKA00786" pattern="UKA00[135-7][13-47-8][06-

↪→9]"
}

}

In this case, structa has merged the top-level mapping in each file into one large top-level mapping. It would do the
same if a top-level list were found in each file too.

3.6 Conclusion

This concludes the structa tutorial series. You should now have some experience of using structa with more complex
datasets, how to tune its various settings for different scenarios, and what to look out for in the results to get the most
out of its analysis.
In other words, if you wish to use structa from the command line, you should be all set. If you want help dealing with
some specific scenarios, the sections in Recipes (page 23) may be of interest. Alternatively, if you wish to use structa
in your own Python scripts, the API Reference (page 25) may prove useful.
Finally, if you wish to hack on structa yourself, please see the Development (page 43) chapter for more information.

3.5. Multiple Inputs 17

Structa 0.3 Documentation, Release 0.3

18 Chapter 3. Real World Data

CHAPTER

FOUR

COMMAND LINE REFERENCE

4.1 Synopsis

structa [-h] [--version] [-f {auto,csv,json,yaml}] [-e ENCODING]
[--encoding-strict] [--no-encoding-strict]
[-F INT] [-M NUM] [-B NUM] [-E NUM] [--str-limit NUM]
[--hide-count] [--show-count] [--hide-lengths] [--show-lengths]
[--hide-pattern] [--show-pattern]
[--hide-range] [--show-range {hidden,limits,median,quartiles,graph}]
[--hide-samples] [--show-samples]
[--min-timestamp WHEN] [--max-timestamp WHEN]
[--max-numeric-len LEN] [--sample-bytes SIZE]
[--strip-whitespace] [--no-strip-whitespace]
[--csv-format FIELD[QUOTE]] [--yaml-safe] [--no-yaml-safe]
[file [file ...]]

4.2 Positional Arguments

file
The data-file(s) to analyze; if this is - or unspecified then stdin will be read for the data; if multiple files are
specified all will be read and analyzed as an array of similar structures

4.3 Optional Arguments

-h, --help
show this help message and exit

--version
show program’s version number and exit

-f {auto,csv,json,yaml}, --format {auto,csv,json,yaml}
The format of the data file; if this is unspecified, it will be guessed based on the first bytes of the file; valid
choices are auto (the default), csv, or json

-e ENCODING, --encoding ENCODING
The string encoding of the file, e.g. utf-8 (default: auto). If “auto” then the file will be sampled to determine
the encoding (see --sample-bytes (page 20))

--encoding-strict, --no-encoding-strict
Controls whether character encoding is strictly enforced and will result in an error if invalid characters are
found during analysis. If disabled, a replacement character will be inserted for invalid sequences. The default
is strict decoding

19

Structa 0.3 Documentation, Release 0.3

-F INT, --field-threshold INT
If the number of distinct keys in a map, or columns in a tuple is less than this then they will be considered
distinct fields instead of being lumped under a generic type like str (default: 20)

-M NUM, --merge-threshold NUM
The proportion of mapping fields which must match other mappings for them to be considered potential merge
candidates (default: 50%)

-B NUM, --bad-threshold NUM
The proportion of string values which are allowed to mismatch a pattern without preventing the pattern from
being reported; the proportion of “bad” data permitted in a field (default: 1%)

-E NUM, --empty-threshold NUM
The proportion of string values permitted to be empty without preventing the pattern from being reported; the
proportion of “empty” data permitted in a field (default: 99%)

--str-limit NUM
The length beyond which only the lengths of strs will be reported; below this the actual value of the string will
be displayed (default: 20)

--hide-count, --show-count
If set, show the count of items in containers, the count of unique scalar values, and the count of all sample
values (if --show-samples (page 20) is set). If disabled, counts will be hidden

--hide-lengths, --show-lengths
If set, display the range of lengths of string fields in the same format as specified by--show-range (page 20)

--hide-pattern, --show-pattern
If set, show the pattern determined for fixed length string fields. If disabled, pattern information will be hidden

--hide-range, --show-range {hidden,limits,median,quartiles,graph}
Show the range of numeric (and temporal) fields in a variety of forms. The default is ‘limits’ which simply
displays the minimum and maximum; ‘median’ includes the median between these; ‘quartiles’ shows all three
quartiles between the minimum and maximum; ‘graph’ displays a crude chart showing the positions of the
quartiles relative to the limits. Use --hide-range (page 20) to hide all range info

--hide-samples, --show-samples
If set, show samples of non-unique scalar values including the most and least common values. If disabled,
samples will be hidden

--min-timestamp WHEN
The minimum timestamp to use when guessing whether floating point fields represent UNIX timestamps (de-
fault: 20 years). Can be specified as an absolute timestamp (in ISO-8601 format) or a duration to be subtracted
from the current timestamp

--max-timestamp WHEN
The maximum timestamp to use when guessing whether floating point fields represent UNIX timestamps (de-
fault: 10 years). Can be specified as an absolute timestamp (in ISO-8601 format) or a duration to be added to
the current timestamp

--max-numeric-len LEN
The maximum number of characters that a number, integer or floating-point, may use in its representation
within the file. Defaults to 30

--sample-bytes SIZE
The number of bytes to sample from the file for the purposes of encoding and format detection. Defaults to
1m. Typical suffixes of k, m, g, etc. may be specified

--strip-whitespace, --no-strip-whitespace
Controls whether leading and trailing found in strings in the will be left alone and thus included or excluded in
any data-type analysis. The default is to strip whitespace

--csv-format FIELD[QUOTE]
The characters used to delimit fields and strings in a CSV file. Can be specified as a single character which will
be used as the field delimiter, or two characters in which case the second will be used as the string quotation

20 Chapter 4. Command Line Reference

Structa 0.3 Documentation, Release 0.3

character. Can also be “auto” which indicates the delimiters should be detected. Bear in mind that some
characters may require quoting for the shell, e.g. ‘;”’

--yaml-safe, --no-yaml-safe
Controls whether the “safe” or “unsafe” YAML loader is used to parse YAML files. The default is the “safe”
parser. Only use --no-yaml-safe (page 21) if you trust the source of your data

--json-strict, --no-json-strict
Controls whether the JSON decoder permits control characters within strings, which isn’t technically valid
JSON. The default is to be strict and disallow such characters

4.3. Optional Arguments 21

Structa 0.3 Documentation, Release 0.3

22 Chapter 4. Command Line Reference

CHAPTER

FIVE

RECIPES

The following sections cover analyzing various common data scenarios with structa, and how structa’s various options
should be set to handle them.

5.1 Analyzing from a URL

While structa itself can’t read URLs directly, the fact you can pipe data to it makes it ideal for use with something
like curl13:

$ curl -s https://piwheels.org/packages.json | structa
[

(
str,
int range=0..32.8K,
int range=0..1.7M

)
]

5.2 Dealing with large records

In the Getting Started (page 3) we saw the following script, which generates a mapping of mappings, for the purposes
of learning about structa --field-threshold (page 19):

Listing 1: simple-fields.py
import sys
import json
import random

json.dump({
str(flight_id): {

"flight_id": flight_id,
"passengers": random.randint(50, 200),
"from": random.choice([

"MAN", "LON", "LHR", "ABZ", "AMS", "AUS", "BCN",
"BER", "BHX", "BRU", "CHI", "ORK", "DAL", "EDI",

]),
}
for flight_id in range(200)

}, sys.stdout)

We saw what happens when the threshold is too low:
13 https://curl.se/

23

https://curl.se/

Structa 0.3 Documentation, Release 0.3

$ python3 simple-fields.py | structa --field-threshold 2
{

str of int range=0..199 pattern="d": { str range="flight_id".."passengers":␣
↪→value }
}

What happens if the threshold is set too high, resulting in the outer mapping being treated as a (very large!) record?

$ python3 simple-fields.py | structa --field-threshold 300
{

str of int range=0..199 pattern="d": {
'flight_id': int range=0..199,
'from': str range="ABZ".."ORK" pattern="[A-EL-MO][A-EHMORU][IK-LNR-SUXZ]",
'passengers': int range=50..199

}
}

Curiously it seems to have worked happily anyway, although the pattern of the “from” field is now considerably more
complex. The reasons for this are relatively complicated, but has to do with a later pass of structa’s algorithmmerging
common sub-structures of records. The merging process unfortunately handles certain things (like the merging of
string field patterns) rather crudely.
Hence, while it’s generally safe to bump structa --field-threshold (page 19) up quite high whenever you
need to, be aware that it will:

• significantly slow down analysis of large files (because the merging process is quite slow)
• complicate the pattern analysis of repeated string fields and a few other things (e.g. string representations of
date-times)

In other words, whenever you find yourself in a situation where you need to bump up the field threshold, a reasonable
procedure to follow is:

1. Bump the threshold very high (e.g. 1000) and run the analysis with structa --show-count (page 20)
enabled.

2. Run the analysis again with the field threshold set below the count of the outer container(s), but above the count
of the inner record mappings

The first run will probably be quite slow, but the second run will be much faster and will produce better output.

24 Chapter 5. Recipes

CHAPTER

SIX

API REFERENCE

In addition to being a utility, structa can also be used as an API from Python (either in a script, or just at the console).
The primary class of interest will generally be Analyzer (page 25) in the structa.analyzer (page 25) mod-
ule, but it is important to understand the various classes in the structa.types (page 33) module to interpret the
output of the analyzer.

6.1 Modules

6.1.1 structa.analyzer

The structa.analyzer (page 25) module contains the Analyzer (page 25) class which is the primary entry
point for using structa’s as an API. It can be constructed without any arguments, and the analyze() (page 26)
method can be immediately used to determine the structure of some data. The merge() (page 26) method can be
used to further refine the returned structure, and measure() (page 26) can be used before-hand if you wish to use
the progress callback to track the progress of long analysis runs.
A typical example of basic usage would be:

from structa.analyzer import Analyzer

data = {
str(i): i
for i in range(1000)

}
an = Analyzer()
structure = an.analyze(data)
print(structure)

The structure returned by analyze() (page 26) (and by merge() (page 26)) will be an instance of one of the
classes in the structa.types (page 33) module, all of which have sensible str14 and repr()15 output.
A more complete example, using Source (page 32) to figure out the source format and encoding:

from structa.analyzer import Analyzer
from structa.source import Source
from urllib.request import urlopen

with urlopen('https://usn.ubuntu.com/usn-db/database-all.json') as f:
src = Source(data)
an = Analyzer()
an.measure(src.data)
structure = an.analyze(src.data)
structure = an.merge(structure)
print(structure)

14 https://docs.python.org/3.9/library/stdtypes.html#str
15 https://docs.python.org/3.9/library/functions.html#repr

25

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#repr

Structa 0.3 Documentation, Release 0.3

class structa.analyzer.Analyzer(*, bad_threshold=Fraction(1, 50), empty_threshold=Fraction(49,
50), field_threshold=20, merge_threshold=Fraction(1, 2),
max_numeric_len=30, strip_whitespace=False,
min_timestamp=None, max_timestamp=None, progress=None)

This class is the core of structa. The various keyword-arguments to the constructor correspond to the command
line options (see Command Line Reference (page 19)).
The analyze() (page 26) method is the primary method for analysis, which simply accepts the data to be
analyzed. The measure() (page 26) method can be used to perform some pre-processing for the purposes
of progress reporting (useful with very large datasets), while merge() (page 26) can be used for additional
post-processing to improve the analysis output.

Parameters
• bad_threshold (numbers.Rational16) – The proportion of data within a field
(across repetitive structures) which is permitted to be invalid without affecting the type
match. Primarily useful with string representations. Valid values are between 0 and 1.

• empty_threshold (numbers.Rational17) – The proportion of strings within a
field (across repetitive structures) which can be blank without affecting the type match.
Empty strings falling within this threshold will be discounted by the analysis. Valid values
are between 0 and 1.

• field_threshold (int18) – The minimum number of fields in a mapping before it
will be treated as a “table” (a mapping of keys to records) rather than a record (a mapping
of fields to values). Valid values are any positive integer.

• merge_threshold (numbers.Rational19) – The proportion of fields within
repetitive mappings that must match for the mappings to be considered “mergeable” by
the merge() (page 26) method. Note that the proportion is calculated with the length
of the shorter mapping in the comparision. Valid values are between 0 and 1.

• strip_whitespace (bool20) – If True21, whitespace is stripped from all strings
prior to any further analysis.

• min_timestamp (datetime.datetime22 or None23) – The minimum times-
tamp to use when determining whether floating point values potentially represent epoch-
based datetime values.

• max_timestamp (datetime.datetime24 or None25) – The maximum times-
tamp to use when determining whether floating point values potentially represent epoch-
based datetime values.

• progress (object26 or None27) – If specificed, must be an object with update
and reset methods that will be called to provide progress feedback. See progress
(page 27) for further details.

analyze(data)
Given some value data (typically an iterable or a mapping), return a Type descendent describing its
structure.

measure(data)
Given some value data (typically an iterable or mapping), measure the number of items within it, for
the purposes of accurately reporting progress during the running of the analyze() (page 26) and
merge() (page 26) methods.
If this is not called prior to these methods, they will still run successfully, but progress tracking (via the
progress (page 27) object) will be inaccurate as the total number of steps to process will never be
calculated.
As measurement is itself a potentially lengthy process, progress will be reported as a function of the
top-level items within data during the run of this method.

merge(struct)
Given some struct (as returned by analyze() (page 26)), merge common sub-structures within it,
returning the new top level structure (another Type (page 34) instance).

26 Chapter 6. API Reference

https://docs.python.org/3.9/library/numbers.html#numbers.Rational
https://docs.python.org/3.9/library/numbers.html#numbers.Rational
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/numbers.html#numbers.Rational
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/constants.html#None

Structa 0.3 Documentation, Release 0.3

property progress
The object passed as the progress parameter on construction.
If this is not None28, it must be an object which implements the following methods:
• reset(*, total: int=None)

• update(n: int=None)

The “reset” method of the object will be called with either the keyword argument “total”, indicating the
new number of steps that have yet to complete, or with no arguments indicating the progress display
should be cleared as a task is complete.
The “update” method of the object will be called with either the number of steps to increment by (as
the positional “n” argument), or with no arguments indicating that the display should simply be refreshed
(e.g. to recalculate the time remaining, or update a time elapsed display).
It is no coincidence that this is a sub-set of the public API of the tqdm29 progress bar project (as that’s
what structa uses in its CLI implementation).

6.1.2 structa.chars

The structa.chars (page 27) module provides classes and constants for defining and manipulating character
classes (in the sense of regular expressions30). The primary class of interest is CharClass (page 27), but most uses
can likely be covered by the set of constants defined in the module.
class structa.chars.CharClass(chars)

A descendent of frozenset31 intended to represent a character class in a regular expression. Can be instan-
tiated from any iterable of single characters (including a str32).
All operations of frozenset33 are supported, but return instances of CharClass (page 27) instead (and
thus, are only valid for operations which result in sets containing individual character values). For example:

>>> abc = CharClass('abc')
>>> abc
CharClass('abc')
>>> ghi = CharClass('ghi')
>>> abc == ghi
False
>>> abc < ghi
False
>>> abc | ghi
CharClass('abcghi')
>>> abc < abc | ghi
True

difference(*others)
Return the difference of two or more sets as a new set.
(i.e. all elements that are in this set but not the others.)

16 https://docs.python.org/3.9/library/numbers.html#numbers.Rational
17 https://docs.python.org/3.9/library/numbers.html#numbers.Rational
18 https://docs.python.org/3.9/library/functions.html#int
19 https://docs.python.org/3.9/library/numbers.html#numbers.Rational
20 https://docs.python.org/3.9/library/functions.html#bool
21 https://docs.python.org/3.9/library/constants.html#True
22 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
23 https://docs.python.org/3.9/library/constants.html#None
24 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
25 https://docs.python.org/3.9/library/constants.html#None
26 https://docs.python.org/3.9/library/functions.html#object
27 https://docs.python.org/3.9/library/constants.html#None
28 https://docs.python.org/3.9/library/constants.html#None
29 https://pypi.org/project/tqdm/
30 https://en.wikipedia.org/wiki/Regular_expression

6.1. Modules 27

https://docs.python.org/3.9/library/constants.html#None
https://pypi.org/project/tqdm/
https://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/3.9/library/stdtypes.html#frozenset
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#frozenset

Structa 0.3 Documentation, Release 0.3

intersection(*others)
Return the intersection of two sets as a new set.
(i.e. all elements that are in both sets.)

symmetric_difference(*others)
Return the symmetric difference of two sets as a new set.
(i.e. all elements that are in exactly one of the sets.)

union(*others)
Return the union of sets as a new set.
(i.e. all elements that are in either set.)

class structa.chars.AnyChar
A singleton class (all instances are the same) which represents any possible character. This is comparable with,
and compatible in operations with, instances of CharClass (page 27). For instance:

>>> abc = CharClass('abc')
>>> any_ = AnyChar()
>>> any_
AnyChar()
>>> abc < any_
True
>>> abc > any_
False
>>> abc | any_
AnyChar()

structa.chars.char_range(start, stop)
Returns aCharClass (page 27) containing all the characters from start to stop inclusive (in unicode codepoint
order). For example:

>>> char_range('a', 'c')
CharClass('abc')
>>> char_range('0', '9')
CharClass('0123456789')

Parameters
• start (str34) – The inclusive start point of the range
• stop (str35) – The inclusive stop point of the range

Constants

structa.chars.oct_digit
Represents any valid digit in base 8 (octal).

structa.chars.dec_digit
Represents any valid digit in base 10 (decimal).

structa.chars.hex_digit
Represents any valid digit in base 16 (hexidecimal).

structa.chars.ident_first
Represents any character which is valid as the first character of a Python identifier.

31 https://docs.python.org/3.9/library/stdtypes.html#frozenset
32 https://docs.python.org/3.9/library/stdtypes.html#str
33 https://docs.python.org/3.9/library/stdtypes.html#frozenset
34 https://docs.python.org/3.9/library/stdtypes.html#str
35 https://docs.python.org/3.9/library/stdtypes.html#str

28 Chapter 6. API Reference

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

Structa 0.3 Documentation, Release 0.3

structa.chars.ident_char
Represents any character which is valid within a Python identifier.

structa.chars.any_char
Represents any valid character (an instance of AnyChar (page 28)).

6.1.3 structa.collections

class structa.collections.FrozenCounter(it)
An immutable variant of the collections.Counter36 class from the Python standard library.
This implements all readable properties and behaviours of the collections.Counter37 class, but ex-
cludes all methods and behaviours which permit modification of the counter. The resulting instances are
hashable and can be used as keys in mappings.
elements()

See collections.Counter.elements()38.
classmethod from_counter(counter)

Construct a FrozenCounter (page 29) from a collections.Counter39 instance. This is gen-
erally much faster than attempting to construct from the elements of an existing counter.
The counter parameter must either be a collections.Counter40 instance, or a FrozenCounter
(page 29) instance (in which case it is returned verbatim).

most_common(n=None)
See collections.Counter.most_common()41.

6.1.4 structa.conversions

structa.conversions.try_conversion(sample, conversion, threshold=0)
Given aCounter42 sample of strings, call the specified conversion on each string returning the set of converted
values.
conversion must be a callable that accepts a single string parameter and returns the converted value. If the
conversion fails it must raise a ValueError43 exception.
If threshold is specified (defaults to 0), it defines the number of “bad” conversions (which result in Val-
ueError44 being raised) that will be ignored. If threshold is exceeded, then ValueError45 will be raised
(or rather passed through from the underlying conversion). Likewise, if threshold is not exceeded, but zero
conversions are successful then ValueError46 will also be raised.

structa.conversions.parse_bool(s, false='0', true='1')
Convert the string s (stripped and lower-cased) to a bool, if it matches either the false string (defaults to ‘0’) or
true (defaults to ‘1’). If it matches neither, raises a ValueError47.

structa.conversions.parse_duration(s)
Convert the string s to a relativedelta. The string must consist of white-space and/or comma separated
values which are a number followed by a suffix indicating duration. For example:

36 https://docs.python.org/3.9/library/collections.html#collections.Counter
37 https://docs.python.org/3.9/library/collections.html#collections.Counter
38 https://docs.python.org/3.9/library/collections.html#collections.Counter.elements
39 https://docs.python.org/3.9/library/collections.html#collections.Counter
40 https://docs.python.org/3.9/library/collections.html#collections.Counter
41 https://docs.python.org/3.9/library/collections.html#collections.Counter.most_common
42 https://docs.python.org/3.9/library/collections.html#collections.Counter
43 https://docs.python.org/3.9/library/exceptions.html#ValueError
44 https://docs.python.org/3.9/library/exceptions.html#ValueError
45 https://docs.python.org/3.9/library/exceptions.html#ValueError
46 https://docs.python.org/3.9/library/exceptions.html#ValueError
47 https://docs.python.org/3.9/library/exceptions.html#ValueError

6.1. Modules 29

https://docs.python.org/3.9/library/collections.html#collections.Counter
https://docs.python.org/3.9/library/collections.html#collections.Counter
https://docs.python.org/3.9/library/collections.html#collections.Counter.elements
https://docs.python.org/3.9/library/collections.html#collections.Counter
https://docs.python.org/3.9/library/collections.html#collections.Counter
https://docs.python.org/3.9/library/collections.html#collections.Counter.most_common
https://docs.python.org/3.9/library/collections.html#collections.Counter
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError

Structa 0.3 Documentation, Release 0.3

>>> parse_duration('1s')
relativedelta(seconds=+1)
>>> parse_duration('5 minutes, 30 seconds')
relativedelta(minutes=+5, seconds=+30)
>>> parse_duration('1 year')
relativedelta(years=+1)

Note that some suffixes like “m” can be ambiguous; using common abbreviations should avoid ambiguity:

>>> parse_duration('1 m')
relativedelta(months=+1)
>>> parse_duration('1 min')
relativedelta(minutes=+1)
>>> parse_duration('1 mon')
relativedelta(months=+1)

The set of possible durations, and their recognized suffixes is as follows:
• Microseconds: microseconds, microsecond, microsec, micros, micro, mseconds, msecond, msecs, msec,
ms

• Seconds: seconds, second, secs, sec, s
• Minutes: minutes, minute, mins, min, mi
• Hours: hours, hour, hrs, hr, h
• Days: days, day, d
• Weeks: weeks, week, wks, wk, w
• Months: months, month, mons, mon, mths, mth, m
• Years: years, year, yrs, yr, y

If conversion fails, ValueError48 is raised.
structa.conversions.parse_duration_or_timestamp(s)

Convert the string s to a datetime49 or a relativedelta. Duration conversion is attempted to and, if
this fails, date-time conversion is attempted. A ValueError50 is raised if both conversions fail.

6.1.5 structa.errors

The structa.errors (page 30) module defines all the custom exception and warning classes used in structa.
exception structa.errors.ValidationWarning

Warning raised when a value fails to validate against the computed pattern or schema.

6.1.6 structa.format

Thestructa.format (page 30)module contains various simple routines for “nicely” formatting certain structures
for output.
structa.format.format_chars(chars, range_sep='-', list_sep='')

Given a set of chars, returns a compressed string representation of all values in the set. For example:

>>> char_ranges({'a', 'b'})
'ab'
>>> char_ranges({'a', 'b', 'c'})

(continues on next page)
48 https://docs.python.org/3.9/library/exceptions.html#ValueError
49 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
50 https://docs.python.org/3.9/library/exceptions.html#ValueError

30 Chapter 6. API Reference

https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/exceptions.html#ValueError

Structa 0.3 Documentation, Release 0.3

(continued from previous page)
'a-c'
>>> char_ranges({'a', 'b', 'c', 'd', 'h'})
'a-dh'
>>> char_ranges({'a', 'b', 'c', 'd', 'h', 'i'})
'a-dh-i'

range_sep and list_sep can be optionally specified to customize the strings used to separate ranges and lists of
ranges respectively.

structa.format.format_int(i)
Reduce i by some appropriate power of 1000 and suffix it with an appropriate Greek qualifier (K for kilo, M
for mega, etc). For example:

>>> format_int(0)
'0'
>>> format_int(10)
'10'
>>> format_int(1000)
'1.0K'
>>> format_int(1600)
'1.6K'
>>> format_int(2**32)
'4.3G'

structa.format.format_repr(self, **override)
Returns a repr()51 style string for self in the form class(name=value, name=value, ...).

Note: At present, this function does not handle recursive structures unlike reprlib.
recursive_repr()52.

structa.format.format_sample(value)
Format a scalar value for output. The value can be a str53, int54, float55, bool56, datetime57, or
None58.
The result is a str59 containing a “nicely” formatted representation of the value. For example:

>>> format_sample(1.0)
'1'
>>> format_sample(1.5)
'1.5'
>>> format_sample(200000000000)
'200.0G'
>>> format_sample(200000000000.0)
'2e+11'
>>> format_sample(None)
'null'
>>> format_sample(False)
'false'
>>> format_sample('foo')
'"foo"'
>>> format_sample(datetime.now())
'2021-08-16 14:05:04'

51 https://docs.python.org/3.9/library/functions.html#repr
52 https://docs.python.org/3.9/library/reprlib.html#reprlib.recursive_repr

6.1. Modules 31

https://docs.python.org/3.9/library/functions.html#repr
https://docs.python.org/3.9/library/reprlib.html#reprlib.recursive_repr
https://docs.python.org/3.9/library/reprlib.html#reprlib.recursive_repr
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#str

Structa 0.3 Documentation, Release 0.3

6.1.7 structa.source

class structa.source.Source(source, *, encoding='auto', encoding_strict=True, format='auto',
csv_delimiter='auto', csv_quotechar='auto', yaml_safe=True,
json_strict=True, sample_limit=1048576)

A generalized data source capable of automatically recognizing certain popular data formats, and guessing
character encodings. Constructed with a mandatory file-like object as the source, and a multitude of keyword-
only options, the decoded content can be access from data (page 32)
The sourcemust have a read()60 method which, given a number of bytes to return, returns a bytes61 string
up to that length, but has no requirements beyond this. Note that this means files over sockets or pipes are
acceptable inputs.

Parameters
• source (file) – The file-like object to decode (must have a read method).
• encoding (str62) – The character encoding used in the source, or “auto” (the default)
if it should be guessed from a sample of the data.

• encoding_strict (bool63) – If True64 (the default), raise an exception if character
decoding errors occur. Otherwise, replace invalid characters silently.

• format (str65) – If “auto” (the default), guess the format of the data source. Otherwise
can be explicitly set to “csv”, “yaml”, or “json” to force parsing of that format.

• csv_delimiter (str66) – If “auto” (the default), attempt to guess the field delimiter
when the “csv” format is being decoded using the csv.Sniffer67 class. Comma, semi-
colon, space, and tab characters will be attempted. Otherwise must be set to the single
character str68 used as the field delimiter (e.g. “,”).

• csv_quotechar (str69) – If “auto” (the default), attempt to guess the string delimiter
when the “csv” format is being decoded using the csv.Sniffer70 class. Otherwise
must be set to the single character str71 used as the string delimiter (e.g. ‘”’).

• yaml_safe (bool72) – If True73 (the default) the “safe” YAML parser from ru-
amel.yaml74 will be used.

• json_strict (bool75) – If True76 (the default), control characters will not be per-
mitted inside decoded strings.

• sample_limit (int77) – The number of bytes to sample from the beginning of the
stream when attempting to determine character encoding. Defaults to 1MB.

property csv_dialect
The csv.Dialect78 used when format (page 32) is “csv”, or None79 otherwise.

property data
The decoded data. Typically a list80 or dict81 of values, but can be any value representable in the
source format.

property encoding
The character encoding detected or specified for the source, e.g. “utf-8”.

property format
The data format detected or specified for the source, e.g. “csv”, “yaml”, or “json”.

53 https://docs.python.org/3.9/library/stdtypes.html#str
54 https://docs.python.org/3.9/library/functions.html#int
55 https://docs.python.org/3.9/library/functions.html#float
56 https://docs.python.org/3.9/library/functions.html#bool
57 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
58 https://docs.python.org/3.9/library/constants.html#None
59 https://docs.python.org/3.9/library/stdtypes.html#str

32 Chapter 6. API Reference

https://docs.python.org/3.9/library/io.html#io.RawIOBase.read
https://docs.python.org/3.9/library/stdtypes.html#bytes
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/csv.html#csv.Sniffer
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/csv.html#csv.Sniffer
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://pypi.org/project/ruamel.yaml/
https://pypi.org/project/ruamel.yaml/
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/csv.html#csv.Dialect
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/stdtypes.html#dict

Structa 0.3 Documentation, Release 0.3

6.1.8 structa.types

Thestructa.types (page 33)module defines the class hierarchy used to represent the structural types of analyzed
data. The root of the hierarchy is the Type (page 34) class. The rest of the hierarchy is illustrated in the chart below:

60 https://docs.python.org/3.9/library/io.html#io.RawIOBase.read
61 https://docs.python.org/3.9/library/stdtypes.html#bytes
62 https://docs.python.org/3.9/library/stdtypes.html#str
63 https://docs.python.org/3.9/library/functions.html#bool
64 https://docs.python.org/3.9/library/constants.html#True
65 https://docs.python.org/3.9/library/stdtypes.html#str
66 https://docs.python.org/3.9/library/stdtypes.html#str
67 https://docs.python.org/3.9/library/csv.html#csv.Sniffer
68 https://docs.python.org/3.9/library/stdtypes.html#str
69 https://docs.python.org/3.9/library/stdtypes.html#str
70 https://docs.python.org/3.9/library/csv.html#csv.Sniffer
71 https://docs.python.org/3.9/library/stdtypes.html#str
72 https://docs.python.org/3.9/library/functions.html#bool
73 https://docs.python.org/3.9/library/constants.html#True
74 https://pypi.org/project/ruamel.yaml/
75 https://docs.python.org/3.9/library/functions.html#bool
76 https://docs.python.org/3.9/library/constants.html#True
77 https://docs.python.org/3.9/library/functions.html#int
78 https://docs.python.org/3.9/library/csv.html#csv.Dialect
79 https://docs.python.org/3.9/library/constants.html#None
80 https://docs.python.org/3.9/library/stdtypes.html#list
81 https://docs.python.org/3.9/library/stdtypes.html#dict

6.1. Modules 33

Structa 0.3 Documentation, Release 0.3

Container

Type

Repr

Scalar

BoolInt

DateTime

Dict

DictField

Empty

Field

Fields

Float

List

NumRepr

Redo
Value

Stats

Str

StrRepr

Tuple

TupleField

URL

class structa.types.Type
The abstract base class of all types recognized by structa.

34 Chapter 6. API Reference

Structa 0.3 Documentation, Release 0.3

This class ensures that instances are hashable (can be used as keys in dictionaries), have a reasonable repr()82
value for ease of use at the REPL83, can be passed to the xml() (page 41) function.
However, the most important thing implemented by this base class is the equality test which can be used to
test whether a given type is “compatible” with another type. The base test implemented at this level is that one
type is compatible with another if one is a sub-class of the other.
Hence, Str (page 38) is compatible with Str (page 38) as they are the same class (and hence one is, redun-
dantly, a sub-class of the other). And Int (page 37) is compatible with Float (page 36) as it is a sub-class
of the latter. However Int (page 37) is not compatbile with Str (page 38) as both descend from Scalar
(page 36) and are siblings rather than parent-child.

class structa.types.Container(sample, content=None)
Abstract base of all types that can contain other types. Constructed with a sample of values, and an optional
definition of content.
This is the base class of List (page 36), Tuple (page 35), and Dict (page 35). Note that it is not the base
class of Str (page 38) as, although that is a compound type, it cannot contain other types; structa treats Str
(page 38) as a scalar type.
Container (page 35) extends Type (page 34) by permitting instances to be added to (compatible, by equal-
ity) instances, combining their content (page 35) appropriately.
content: list84[Type (page 34)]

A list of Type (page 34) descendents representing the content of this instance.
lengths: Stats (page 40)

The Stats (page 40) of the lengths of the sample (page 35) values.
sample: [list85] | [tuple86] | [dict87]

The sample of values that this instance represents.
with_content(content)

Return a new copy of this container with the content (page 35) replaced with content.
class structa.types.Dict(sample, content=None, *, similarity_threshold=0.5)

Represents mappings (or dictionaries).
This concrete refinement of Container (page 35) uses DictField (page 36) instances in its content
(page 35) list.
In the case that a mapping is analyzed as a “record” mapping (of fields to values), the content (page 35) list
will contain one or more DictField (page 36) instances, for which the key (page 36) attribute(s) will be
Field (page 39) instances.
However, if the mapping is analyzed as a “table” mapping (of keys to records), the content (page 35) list
will contain a single DictField (page 36) instance mapping the key’s type to the value structure.
validate(value)

Validate that value (which must be a dict88) matches the analyzed mapping structure.
Raises TypeError89 – if value is not a dict90

class structa.types.Tuple(sample, content=None)
Represents sequences of heterogeneous types (typically tuples).
This concrete refinement of Container (page 35) uses TupleField (page 36) instances in its content
(page 35) list.

82 https://docs.python.org/3.9/library/functions.html#repr
83 https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
84 https://docs.python.org/3.9/library/stdtypes.html#list
85 https://docs.python.org/3.9/library/stdtypes.html#list
86 https://docs.python.org/3.9/library/stdtypes.html#tuple
87 https://docs.python.org/3.9/library/stdtypes.html#dict
88 https://docs.python.org/3.9/library/stdtypes.html#dict
89 https://docs.python.org/3.9/library/exceptions.html#TypeError
90 https://docs.python.org/3.9/library/stdtypes.html#dict

6.1. Modules 35

https://docs.python.org/3.9/library/functions.html#repr
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/exceptions.html#TypeError
https://docs.python.org/3.9/library/stdtypes.html#dict

Structa 0.3 Documentation, Release 0.3

Tuples are typically the result of an analysis of some homogeneous outer sequence (usually a List (page 36)
though sometimes a Dict (page 35)) that contains heterogeneous sequences (the Tuple (page 35) instance).

validate(value)
Validate that value (which must be a tuple91) matches the analyzed mapping structure.

Raises
• TypeError92 – if value is not a tuple93

• ValueError94 – if value is not within the length limits of the sampled values
class structa.types.List(sample, content=None)

Represents sequences of homogeneous types. This only ever has a single Type (page 34) descendent in its
content (page 35) list.
validate(value)

Validate that value (which must be a list95) matches the analyzed mapping structure.
Raises TypeError96 – if value is not a list97

class structa.types.DictField(key, value=None)
Represents a single mapping within a Dict (page 35), from the key (page 36) to its corresponding value
(page 36). For example, a Field (page 39) of a record mapping to some other type, or a generic Str
(page 38) mapping to an Int (page 37) value.
key: Type (page 34)

The Type (page 34) descendent representing a single key in the mapping. This is usually a Scalar
(page 36) descendent, or a Field (page 39).

value: Type (page 34)
The Type (page 34) descendent representing a value in the mapping.

class structa.types.TupleField(index, value=None)
Represents a single field within a Tuple (page 35), with the index (page 36) (an integer number) and its
corresponding value (page 36).
index: int98

The index of the field within the tuple.
value: Type (page 34)

The Type (page 34) descendent representing a value in the tuple.
class structa.types.Scalar(sample)

Abstract base of all types that cannot contain other types. Constructed with a sample of values.
This is the base class of Float (page 36) (from which Int (page 37) and then Bool (page 37) descend),
Str (page 38), and DateTime (page 37).
values: Stats (page 40)

The Stats (page 40) of the sample (page 36) values.
property sample

A sequence of the sample values that the instance was constructed from (this will not be the original
sequence, but one derived from that).

class structa.types.Float(sample)
Represents scalar floating-point values in datasets. Constructed with a sample of values.

91 https://docs.python.org/3.9/library/stdtypes.html#tuple
92 https://docs.python.org/3.9/library/exceptions.html#TypeError
93 https://docs.python.org/3.9/library/stdtypes.html#tuple
94 https://docs.python.org/3.9/library/exceptions.html#ValueError
95 https://docs.python.org/3.9/library/stdtypes.html#list
96 https://docs.python.org/3.9/library/exceptions.html#TypeError
97 https://docs.python.org/3.9/library/stdtypes.html#list
98 https://docs.python.org/3.9/library/functions.html#int

36 Chapter 6. API Reference

https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/exceptions.html#TypeError
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/exceptions.html#TypeError
https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/functions.html#int

Structa 0.3 Documentation, Release 0.3

classmethod from_strings(sample, pattern, bad_threshold=0)
Class method for constructing an instance wrapped in a StrRepr (page 39) to indicate a string represen-
tation of a set of floating-point values. Constructed with an sample of strings, a pattern (which currently
must simply be “f”), and a bad_threshold of values which are permitted to fail conversion.

validate(value)
Validate that value (which must be a float99) lies within the range of sampled values.

Raises
• TypeError100 – if value is not a float101

• ValueError102 – if value is outside the range of sampled values
class structa.types.Int(sample)

Represents scalar integer values in datasets. Constructed with a sample of values.
classmethod from_strings(sample, pattern, bad_threshold=0)

Class method for constructing an instance wrapped in a StrRepr (page 39) to indicate a string repre-
sentation of a set of integer values. Constructed with an sample of strings, a pattern (which may be “d”,
“o”, or “x” to represent the base used in the string representation), and a bad_threshold of values which
are permitted to fail conversion.

validate(value)
Validate that value (which must be an int103) lies within the range of sampled values.

Raises
• TypeError104 – if value is not a int105

• ValueError106 – if value is outside the range of sampled values
class structa.types.Bool(sample)

Represents scalar boolean values in datasets. Constructed with a sample of values.
classmethod from_strings(iterable, pattern, bad_threshold=0)

Class method for constructing an instance wrapped in a StrRepr (page 39) to indicate a string repre-
sentation of a set of booleans. Constructed with an sample of strings, a pattern (which is a string of the
form “false|true”, i.e. the expected string representations of the False107 and True108 values separated
by a bar), and a bad_threshold of values which are permitted to fail conversion.

validate(value)
Validate that value is an int109 (with the value 0 or 1), or a bool110. Raises TypeError111 or
ValueError112 in the event that value fails to validate.

Raises
• TypeError113 – if value is not a bool114 or int115

• ValueError116 – if value is an int117 that is not 0 or 1
99 https://docs.python.org/3.9/library/functions.html#float
100 https://docs.python.org/3.9/library/exceptions.html#TypeError
101 https://docs.python.org/3.9/library/functions.html#float
102 https://docs.python.org/3.9/library/exceptions.html#ValueError
103 https://docs.python.org/3.9/library/functions.html#int
104 https://docs.python.org/3.9/library/exceptions.html#TypeError
105 https://docs.python.org/3.9/library/functions.html#int
106 https://docs.python.org/3.9/library/exceptions.html#ValueError
107 https://docs.python.org/3.9/library/constants.html#False
108 https://docs.python.org/3.9/library/constants.html#True
109 https://docs.python.org/3.9/library/functions.html#int
110 https://docs.python.org/3.9/library/functions.html#bool
111 https://docs.python.org/3.9/library/exceptions.html#TypeError
112 https://docs.python.org/3.9/library/exceptions.html#ValueError
113 https://docs.python.org/3.9/library/exceptions.html#TypeError
114 https://docs.python.org/3.9/library/functions.html#bool
115 https://docs.python.org/3.9/library/functions.html#int
116 https://docs.python.org/3.9/library/exceptions.html#ValueError
117 https://docs.python.org/3.9/library/functions.html#int

6.1. Modules 37

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/exceptions.html#TypeError
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/exceptions.html#TypeError
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/exceptions.html#TypeError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#TypeError
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/functions.html#int

Structa 0.3 Documentation, Release 0.3

class structa.types.DateTime(sample)
Represents scalar timestamps (a date, and a time) in datasets. Constructed with a sample of values.
classmethod from_numbers(pattern)

Class method for constructing an instance wrapped in a NumRepr (page 39) to indicate a numeric rep-
resentation of a set of timestamps (e.g. day offset from the UNIX epoch).
Constructed with an sample of number, a pattern (which can be a StrRepr (page 39) instance if the
numbers are themselves represented as strings, otherwise must be the Int (page 37) or Float (page 36)
instance representing the numbers), and a bad_threshold of values which are permitted to fail conversion.

classmethod from_strings(iterable, pattern, bad_threshold=0)
Class method for constructing an instance wrapped in a StrRepr (page 39) to indicate a string repre-
sentation of a set of timestamps.
Constructed with an sample of strings, a pattern (which must be compatible with datetime.
datetime.strptime()118), and a bad_threshold of values which are permitted to fail conversion.

validate(value)
Validate that value (which must be a datetime119) lies within the range of sampled values.

Raises
• TypeError120 – if value is not a datetime.datetime121

• ValueError122 – if value is outside the range of sampled values
class structa.types.Str(sample, pattern=None)

Represents string values in datasets. Constructed with a sample of values, and an optional pattern (a sequence
of CharClass (page 27) instances indicating which characters are valid at which position in fixed-length
strings).
lengths: Stats (page 40)

The Stats (page 40) of the lengths of the sample values.
pattern: [structa.chars.CharClass (page 27)]

None123 if the string is variable length or has no discernable pattern to its values. Otherwise a sequence
of CharClass (page 27) instances indicating the valid characters at each position of the string.

validate(value)
Validate that value (which must be a str124) lies within the range of sampled values and, if pattern
(page 38) is not None125, that it matches the pattern stored there.

Raises
• TypeError126 – if value is not a str127

• ValueError128 – if value is outside the range of sampled values or deviates from the
given pattern (page 38)

class structa.types.Repr(content, pattern=None)
Abstract base class for representations (string, numeric) of other types. Parent of StrRepr (page 39) and
NumRepr (page 39).
content: Type (page 34)

The Type (page 34) that this instance is a representation of. For example, a string representation of
118 https://docs.python.org/3.9/library/datetime.html#datetime.datetime.strptime
119 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
120 https://docs.python.org/3.9/library/exceptions.html#TypeError
121 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
122 https://docs.python.org/3.9/library/exceptions.html#ValueError
123 https://docs.python.org/3.9/library/constants.html#None
124 https://docs.python.org/3.9/library/stdtypes.html#str
125 https://docs.python.org/3.9/library/constants.html#None
126 https://docs.python.org/3.9/library/exceptions.html#TypeError
127 https://docs.python.org/3.9/library/stdtypes.html#str
128 https://docs.python.org/3.9/library/exceptions.html#ValueError

38 Chapter 6. API Reference

https://docs.python.org/3.9/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3.9/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/exceptions.html#TypeError
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/exceptions.html#TypeError
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/exceptions.html#ValueError

Structa 0.3 Documentation, Release 0.3

integer numbers would be represented by a StrRepr (page 39) instance with content (page 38)
being a Int (page 37) instance.

pattern: str129 | Type (page 34) | None130

Particulars of the representation. For example, in the case of string representations of integers, this is a
string indicating the base (“o”, “d”, “x”). In the case of a numeric representation of a datetime, this is the
Type (page 34) (Int (page 37) or Float (page 36)) of the values.

class structa.types.StrRepr(content, pattern=None)
A string representation of an inner type. Typically used to wrap Int (page 37), Float (page 36), Bool
(page 37), or DateTime (page 37). Descends from Repr (page 38).

class structa.types.NumRepr(content, pattern=None)
A numeric representation of an inner type. Typically used to wrap DateTime (page 37). Descends from
Repr (page 38).

class structa.types.URL(sample, pattern=None)
A specialization of Str (page 38) for representing URLs. Currently does little more than trivial validation of
the scheme.
validate(value)

Validate that value starts with “http://” or “https://”
Raises ValueError131 – if value does not start with a valid scheme

class structa.types.Field(value, count, optional=False)
Represents a single key in a DictField (page 36) mapping. This is used by the analyzer when it decides
a mapping represents a “record” (a mapping of fields to values) rather than a “table” (a mapping of keys to
records).
Constructed with the value of the key, the count of mappings that the key appears in, and a flag indicating if
the key is optional (defaults to False132 for mandatory).
value: str133 | int134 | float135 | tuple136 | ...

The value of the key.
count: int137

The number of mappings that the key belongs to.
optional: bool138

If True139, the key may be ommitted from certain mappings in the data. If False140 (the default), the
key always appears in the owning mapping.

validate(value)
Validates that value matches the expected key value.

Raises ValueError141 – if value does not match the expected value
class structa.types.Value(sample)

A descendent of Type (page 34) that represents any arbitrary type at all. This is used when the analyzer comes
across a container of a multitude of (incompatible) types, e.g. a list of both strings and integers.
It compares equal to all other types, and when added to other types, the result is a new Value (page 39)
instance.

129 https://docs.python.org/3.9/library/stdtypes.html#str
130 https://docs.python.org/3.9/library/constants.html#None
131 https://docs.python.org/3.9/library/exceptions.html#ValueError
132 https://docs.python.org/3.9/library/constants.html#False
133 https://docs.python.org/3.9/library/stdtypes.html#str
134 https://docs.python.org/3.9/library/functions.html#int
135 https://docs.python.org/3.9/library/functions.html#float
136 https://docs.python.org/3.9/library/stdtypes.html#tuple
137 https://docs.python.org/3.9/library/functions.html#int
138 https://docs.python.org/3.9/library/functions.html#bool
139 https://docs.python.org/3.9/library/constants.html#True
140 https://docs.python.org/3.9/library/constants.html#False
141 https://docs.python.org/3.9/library/exceptions.html#ValueError

6.1. Modules 39

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
http://
https://
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/exceptions.html#ValueError

Structa 0.3 Documentation, Release 0.3

validate(value)
Trivial validation; always passes, never raises an exception.

class structa.types.Empty
A descendent of Type (page 34) that represents a container with no content. For example, if the analyzer
comes across a field which always contains an empty list, it would be represented as a List (page 36) instance
where List.content was a sequence containing an Empty (page 40) instance.
It compares equal to all other types, and when added to other types, the result is the other type. This allows
the merge phase to combine empty lists with a list of integers found at the same level, for example.
validate(value)

Trivial validation; always passes.

Note: This counter-intuitive behaviour is because the Empty (page 40) value indicates a lack of type-
information rather than a definitely empty container (after all, there’s usually little sense in having a
container field which will always be empty in most hierarchical structures).
The way this differs from Value (page 39) is in the additive action.

class structa.types.Stats(sample, card, min, q1, q2, q3, max)
Stores cardinality, minimum, maximum, and (high) median of a sample of numeric values (or lengths of strings
or containers), along with the specified sample of values.
Typically instances of this class are constructed via the from_sample() (page 40) or from_lengths()
(page 40) classmethods rather than directly. However, instances can also be added to other instances to generate
statistics for the combined sample set. Instances may also be compared for equality.
card: int142

The number of items in the sample (page 40) that the statistics were calculated from.
q1: int143 | float144 | str145 | datetime.datetime146 | ...

The first (lower) quartile of the sample (page 40).
q2: int147 | float148 | str149 | datetime.datetime150 | ...

The second quartile (aka the median (page 40)) of the sample (page 40).
q3: int151 | float152 | str153 | datetime.datetime154 | ...

The third (upper) quartile of the sample (page 40).
max: int155 | float156 | str157 | datetime.datetime158 | ...

The largest value in the sample (page 40).
min: int159 | float160 | str161 | datetime.datetime162 | ...

The smallest value in the sample (page 40).
sample: structa.collections.FrozenCounter (page 29)

The sample data that the statistics were calculated from. This is always an instance of FrozenCounter
(page 29).

classmethod from_lengths(sample)
Given an iterable of sample values, which must be of a homogeneous compound type (e.g. str163,
tuple164), construct an instance after calculating the len()165 of each item of the sample, and then
the minimum, maximum, and quartile values of the lengths.

classmethod from_sample(sample)
Given an iterable of sample values, which must be of a homogeneous comparable type (e.g. int166,
str167, float168), construct an instance after calculating the minimum, maximum, and quartile values
of the sample.

property median
An alias for the second quartile, q2 (page 40).

40 Chapter 6. API Reference

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/datetime.html#datetime.datetime
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#len
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float

Structa 0.3 Documentation, Release 0.3

6.1.9 structa.xml

The structa.xml (page 41) module provides methods for generating and manipulating XML, primarily in the
form of xml.etree.ElementTree169 objects. The main class of interest is ElementFactory (page 41),
which can be used to generate entire element-tree documents in a functional manner.
The xml() (page 41) function can be used in a similar manner to str170 or repr()171 to generate XML
representations of supported objects (most classes within structa.types (page 33) support this). Finally,
get_transform() (page 42) can be used to obtain XSLT trees defined by structa (largely for display purposes).
class structa.xml.ElementFactory(namespace=None)

A class inspired by Genshi for easy creation of ElementTree Elements.
The ElementFactory class was inspired by the Genshi builder unit in that it permits simple creation of Elements
by calling methods on the tag object named after the element you wish to create. Positional arguments become
content within the element, and keyword arguments become attributes.
If you need an attribute or element tag that conflicts with a Python keyword, simply append an underscore to
the name (which will be automatically stripped off).
Content can be just about anything, including booleans, integers, longs, dates, times, etc. This class simply
applies their default string conversion to them (except basestring derived types like string and unicode which
are simply used verbatim).
For example:

>>> tostring(tag.a('A link'))
'<a>A link'
>>> tostring(tag.a('A link', class_='menuitem'))
'A link'
>>> tostring(tag.p('A ', tag.a('link', class_='menuitem')))
'<p>A link</p>'

structa.xml.xml(obj)
In a similar manner to str172, this function calls the __xml__ method (if any) on obj, returning the result
which is expected to be an Element173 instance representing the object.

142 https://docs.python.org/3.9/library/functions.html#int
143 https://docs.python.org/3.9/library/functions.html#int
144 https://docs.python.org/3.9/library/functions.html#float
145 https://docs.python.org/3.9/library/stdtypes.html#str
146 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
147 https://docs.python.org/3.9/library/functions.html#int
148 https://docs.python.org/3.9/library/functions.html#float
149 https://docs.python.org/3.9/library/stdtypes.html#str
150 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
151 https://docs.python.org/3.9/library/functions.html#int
152 https://docs.python.org/3.9/library/functions.html#float
153 https://docs.python.org/3.9/library/stdtypes.html#str
154 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
155 https://docs.python.org/3.9/library/functions.html#int
156 https://docs.python.org/3.9/library/functions.html#float
157 https://docs.python.org/3.9/library/stdtypes.html#str
158 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
159 https://docs.python.org/3.9/library/functions.html#int
160 https://docs.python.org/3.9/library/functions.html#float
161 https://docs.python.org/3.9/library/stdtypes.html#str
162 https://docs.python.org/3.9/library/datetime.html#datetime.datetime
163 https://docs.python.org/3.9/library/stdtypes.html#str
164 https://docs.python.org/3.9/library/stdtypes.html#tuple
165 https://docs.python.org/3.9/library/functions.html#len
166 https://docs.python.org/3.9/library/functions.html#int
167 https://docs.python.org/3.9/library/stdtypes.html#str
168 https://docs.python.org/3.9/library/functions.html#float
169 https://docs.python.org/3.9/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
170 https://docs.python.org/3.9/library/stdtypes.html#str
171 https://docs.python.org/3.9/library/functions.html#repr

6.1. Modules 41

https://docs.python.org/3.9/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#repr
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

Structa 0.3 Documentation, Release 0.3

structa.xml.get_transform(name)
Return the XSLT transform defined by name in the structa.ui module.

structa.xml.merge_siblings(elem)
Consolidate the content of adjacent sibling child elements with the same tag. For example:

>>> x = XML('<doc><a>a<a>b<a>cd<a>e</doc>')
>>> tostring(merge_siblings(x))
b'<doc><a>abcd<a>e</doc>'

Note that the function only deals with direct child elements of elem; it does nothing to descendents of those
children, even if they have the same tag as their parent:

>>> x = XML('<doc><a>a<a>b<a>cd<a>e</doc>')
>>> tostring(merge_siblings(x))
b'<doc><a>a<a>bcd<a>e</doc>'

172 https://docs.python.org/3.9/library/stdtypes.html#str
173 https://docs.python.org/3.9/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

42 Chapter 6. API Reference

CHAPTER

SEVEN

DEVELOPMENT

The main GitHub repository for the project can be found at:
https://github.com/waveform80/structa

The project is currently in its early stages, but is quite useable and the documentation, while incomplete, should be
useful to both users and developers wishing to hack on the project itself. The test suite is also nearing full coverage.

7.1 Development installation

If you wish to develop structa, obtain the source by cloning the GitHub repository and then use the “develop” target
of the Makefile which will install the package as a link to the cloned repository allowing in-place development. The
following example demonstrates this method within a virtual Python environment:

$ sudo apt install build-essential git virtualenvwrapper

After installing virtualenvwrapper you’ll need to restart your shell before commands like mkvirtualenv
will operate correctly. Once you’ve restarted your shell, continue:

$ cd
$ mkvirtualenv -p /usr/bin/python3 structa
$ workon structa
(structa) $ git clone https://github.com/waveform80/structa.git
(structa) $ cd structa
(structa) $ make develop

To pull the latest changes from git into your clone and update your installation:

$ workon structa
(structa) $ cd ~/structa
(structa) $ git pull
(structa) $ make develop

To remove your installation, destroy the sandbox and the clone:

(structa) $ deactivate
$ rmvirtualenv structa
$ rm -rf ~/structa

43

https://github.com/waveform80/structa

Structa 0.3 Documentation, Release 0.3

7.2 Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is used for conversion of SVGs to
other formats, Graphviz is used for rendering certain charts, and TeX Live is required for building PDF output. The
following command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended texlive-xetex graphviz inkscape \
python3-sphinx python3-sphinx-rtd-theme latexmk xindy

Once these are installed, you can use the “doc” target to build the documentation in all supported formats (HTML,
ePub, and PDF):

$ workon structa
(structa) $ cd ~/structa
(structa) $ make doc

However, the easiest way to develop the documentation is with the “preview” target which will build the HTML
version of the docs, and start a web-server to preview the output. The web-server will then watch for source changes
(in both the documentation source, and the application’s source) and rebuild the HTML automatically as required:

$ workon structa
(structa) $ cd ~/structa
(structa) $ make preview

The HTML output is written to build/html while the PDF output goes to build/latex.

7.3 Test suite

If you wish to run the structa test suite, follow the instructions in Development installation (page 43) above and then
make the “test” target within the sandbox:

$ workon structa
(structa) $ cd ~/structa
(structa) $ make test

The test suite is also setup for usage with the tox utility, in which case it will attempt to execute the test suite with
all supported versions of Python. If you are developing under Ubuntu you may wish to look into the Dead Snakes
PPA174 in order to install old/new versions of Python; the tox setup should work with the version of tox shipped with
Ubuntu Focal, but more features (like parallel test execution) are available with later versions.
For example, to execute the test suite under tox, skipping interpreter versions which are not installed:

$ tox -s

To execute the test suite under all installed interpreter versions in parallel, using as many parallel tasks as there are
CPUs, then displaying a combined report of coverage from all environments:

$ tox -p auto -s
$ coverage combine .coverage.py*
$ coverage report

174 https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

44 Chapter 7. Development

https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa
https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

CHAPTER

EIGHT

CHANGELOG

8.1 Release 0.3 (2021-10-27)

• Fixed dictionary merging of scalar and field keys (#19175)
• Wrote full documentation including tutorials and API reference
• Lots of other minor fixes …

8.2 Release 0.2.1 (2021-08-17 … later)

• It’d help if you included the XSL for the UI …

8.3 Release 0.2 (2021-08-17)

• Better tuple analysis (#4176) which was a pre-requisite for…
• Added CSV support (#5177)
• Added some pretty progress output (#6178)
• Prettier output (#8179)
• Added documentation (#9180)
• Added YAML support (#10181)
• Better elimination of common sub-trees (#12182)
• Multi-file input support (#15183)

175 https://github.com/waveform80/structa/issues/19
176 https://github.com/waveform80/structa/issues/4
177 https://github.com/waveform80/structa/issues/5
178 https://github.com/waveform80/structa/issues/6
179 https://github.com/waveform80/structa/issues/8
180 https://github.com/waveform80/structa/issues/9
181 https://github.com/waveform80/structa/issues/10
182 https://github.com/waveform80/structa/issues/12
183 https://github.com/waveform80/structa/issues/15

45

https://github.com/waveform80/structa/issues/19
https://github.com/waveform80/structa/issues/4
https://github.com/waveform80/structa/issues/5
https://github.com/waveform80/structa/issues/6
https://github.com/waveform80/structa/issues/8
https://github.com/waveform80/structa/issues/9
https://github.com/waveform80/structa/issues/10
https://github.com/waveform80/structa/issues/12
https://github.com/waveform80/structa/issues/15

Structa 0.3 Documentation, Release 0.3

8.4 Release 0.1 (2018-12-17)

• Initial commit of something that works … ish

46 Chapter 8. Changelog

CHAPTER

NINE

LICENSE

This file is part of structa.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or see <https:
//www.gnu.org/licenses/>.

47

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

Structa 0.3 Documentation, Release 0.3

48 Chapter 9. License

PYTHON MODULE INDEX

s
structa.analyzer, 25
structa.chars, 27
structa.collections, 29
structa.conversions, 29
structa.errors, 30
structa.format, 30
structa.source, 32
structa.types, 33
structa.xml, 41

49

Structa 0.3 Documentation, Release 0.3

50 Python Module Index

INDEX

Symbols
-B NUM

structa command line option, 20
-E NUM

structa command line option, 20
-F INT

structa command line option, 19
-M NUM

structa command line option, 20
--bad-threshold NUM

structa command line option, 20
--csv-format FIELD[QUOTE]

structa command line option, 20
--empty-threshold NUM

structa command line option, 20
--encoding ENCODING

structa command line option, 19
--encoding-strict

structa command line option, 19
--field-threshold INT

structa command line option, 19
--format {auto,csv,json,yaml}

structa command line option, 19
--help

structa command line option, 19
--hide-count

structa command line option, 20
--hide-lengths

structa command line option, 20
--hide-pattern

structa command line option, 20
--hide-range

structa command line option, 20
--hide-samples

structa command line option, 20
--json-strict

structa command line option, 21
--max-numeric-len LEN

structa command line option, 20
--max-timestamp WHEN

structa command line option, 20
--merge-threshold NUM

structa command line option, 20
--min-timestamp WHEN

structa command line option, 20
--no-encoding-strict

structa command line option, 19
--no-json-strict

structa command line option, 21
--no-strip-whitespace

structa command line option, 20
--no-yaml-safe

structa command line option, 21
--sample-bytes SIZE

structa command line option, 20
--show-count

structa command line option, 20
--show-lengths

structa command line option, 20
--show-pattern

structa command line option, 20
--show-range {hid-

den,limits,median,quartiles,graph}
structa command line option, 20

--show-samples
structa command line option, 20

--str-limit NUM
structa command line option, 20

--strip-whitespace
structa command line option, 20

--version
structa command line option, 19

--yaml-safe
structa command line option, 21

-e ENCODING
structa command line option, 19

-f {auto,csv,json,yaml}
structa command line option, 19

-h
structa command line option, 19

A
analyze() (structa.analyzer.Analyzer method), 26
Analyzer (class in structa.analyzer), 25
any_char (in module structa.chars), 29
AnyChar (class in structa.chars), 28

B
Bool (class in structa.types), 37

C
card (structa.types.Stats attribute), 40

51

Structa 0.3 Documentation, Release 0.3

char_range() (in module structa.chars), 28
CharClass (class in structa.chars), 27
Container (class in structa.types), 35
content (structa.types.Container attribute), 35
content (structa.types.Repr attribute), 38
count (structa.types.Field attribute), 39
csv_dialect (structa.source.Source property), 32

D
data (structa.source.Source property), 32
DateTime (class in structa.types), 37
dec_digit (in module structa.chars), 28
Dict (class in structa.types), 35
DictField (class in structa.types), 36
difference() (structa.chars.CharClass method), 27

E
ElementFactory (class in structa.xml), 41
elements() (structa.collections.FrozenCounter

method), 29
Empty (class in structa.types), 40
encoding (structa.source.Source property), 32

F
Field (class in structa.types), 39
file

structa command line option, 19
Float (class in structa.types), 36
format (structa.source.Source property), 32
format_chars() (in module structa.format), 30
format_int() (in module structa.format), 31
format_repr() (in module structa.format), 31
format_sample() (in module structa.format), 31
from_counter() (structa.collections.FrozenCounter

class method), 29
from_lengths() (structa.types.Stats class method),

40
from_numbers() (structa.types.DateTime class

method), 38
from_sample() (structa.types.Stats class method), 40
from_strings() (structa.types.Bool class method),

37
from_strings() (structa.types.DateTime class

method), 38
from_strings() (structa.types.Float class method),

36
from_strings() (structa.types.Int class method), 37
FrozenCounter (class in structa.collections), 29

G
get_transform() (in module structa.xml), 42

H
hex_digit (in module structa.chars), 28

I
ident_char (in module structa.chars), 28

ident_first (in module structa.chars), 28
index (structa.types.TupleField attribute), 36
Int (class in structa.types), 37
intersection() (structa.chars.CharClass method),

27

K
key (structa.types.DictField attribute), 36

L
lengths (structa.types.Container attribute), 35
lengths (structa.types.Str attribute), 38
List (class in structa.types), 36

M
max (structa.types.Stats attribute), 40
measure() (structa.analyzer.Analyzer method), 26
median (structa.types.Stats property), 40
merge() (structa.analyzer.Analyzer method), 26
merge_siblings() (in module structa.xml), 42
min (structa.types.Stats attribute), 40
module

structa.analyzer, 25
structa.chars, 27
structa.collections, 29
structa.conversions, 29
structa.errors, 30
structa.format, 30
structa.source, 32
structa.types, 33
structa.xml, 41

most_common() (structa.collections.FrozenCounter
method), 29

N
NumRepr (class in structa.types), 39

O
oct_digit (in module structa.chars), 28
optional (structa.types.Field attribute), 39

P
parse_bool() (in module structa.conversions), 29
parse_duration() (in module structa.conversions),

29
parse_duration_or_timestamp() (in module

structa.conversions), 30
pattern (structa.types.Repr attribute), 39
pattern (structa.types.Str attribute), 38
progress (structa.analyzer.Analyzer property), 27

Q
q1 (structa.types.Stats attribute), 40
q2 (structa.types.Stats attribute), 40
q3 (structa.types.Stats attribute), 40

R
Repr (class in structa.types), 38

52 Index

Structa 0.3 Documentation, Release 0.3

S
sample (structa.types.Container attribute), 35
sample (structa.types.Scalar property), 36
sample (structa.types.Stats attribute), 40
Scalar (class in structa.types), 36
Source (class in structa.source), 32
Stats (class in structa.types), 40
Str (class in structa.types), 38
StrRepr (class in structa.types), 39
structa command line option

-B NUM, 20
-E NUM, 20
-F INT, 19
-M NUM, 20
--bad-threshold NUM, 20
--csv-format FIELD[QUOTE], 20
--empty-threshold NUM, 20
--encoding ENCODING, 19
--encoding-strict, 19
--field-threshold INT, 19
--format {auto,csv,json,yaml}, 19
--help, 19
--hide-count, 20
--hide-lengths, 20
--hide-pattern, 20
--hide-range, 20
--hide-samples, 20
--json-strict, 21
--max-numeric-len LEN, 20
--max-timestamp WHEN, 20
--merge-threshold NUM, 20
--min-timestamp WHEN, 20
--no-encoding-strict, 19
--no-json-strict, 21
--no-strip-whitespace, 20
--no-yaml-safe, 21
--sample-bytes SIZE, 20
--show-count, 20
--show-lengths, 20
--show-pattern, 20
--show-range {hid-

den,limits,median,quartiles,graph},
20

--show-samples, 20
--str-limit NUM, 20
--strip-whitespace, 20
--version, 19
--yaml-safe, 21
-e ENCODING, 19
-f {auto,csv,json,yaml}, 19
-h, 19
file, 19

structa.analyzer
module, 25

structa.chars
module, 27

structa.collections
module, 29

structa.conversions
module, 29

structa.errors
module, 30

structa.format
module, 30

structa.source
module, 32

structa.types
module, 33

structa.xml
module, 41

symmetric_difference()
(structa.chars.CharClass method), 28

T
try_conversion() (in module structa.conversions),

29
Tuple (class in structa.types), 35
TupleField (class in structa.types), 36
Type (class in structa.types), 34

U
union() (structa.chars.CharClass method), 28
URL (class in structa.types), 39

V
validate() (structa.types.Bool method), 37
validate() (structa.types.DateTime method), 38
validate() (structa.types.Dict method), 35
validate() (structa.types.Empty method), 40
validate() (structa.types.Field method), 39
validate() (structa.types.Float method), 37
validate() (structa.types.Int method), 37
validate() (structa.types.List method), 36
validate() (structa.types.Str method), 38
validate() (structa.types.Tuple method), 36
validate() (structa.types.URL method), 39
validate() (structa.types.Value method), 39
ValidationWarning, 30
Value (class in structa.types), 39
value (structa.types.DictField attribute), 36
value (structa.types.Field attribute), 39
value (structa.types.TupleField attribute), 36
values (structa.types.Scalar attribute), 36

W
with_content() (structa.types.Container method),

35

X
xml() (in module structa.xml), 41

Index 53

	Installation
	Ubuntu Linux
	Microsoft Windows
	Other Platforms

	Getting Started
	Pre-requisites
	Basic Usage
	Bad Data (--bad-threshold)
	Missing Data (--empty-threshold)
	Fields or Tables (--field-threshold)
	Merging Structures (--merge-threshold)
	Other Switches
	Integer Handling
	Date Handling

	Conclusion

	Real World Data
	Pre-requisites
	“Real World” Data
	Optional Keys
	“Bad” Data
	Multiple Inputs
	Conclusion

	Command Line Reference
	Synopsis
	Positional Arguments
	Optional Arguments

	Recipes
	Analyzing from a URL
	Dealing with large records

	API Reference
	Modules
	structa.analyzer
	structa.chars
	Constants

	structa.collections
	structa.conversions
	structa.errors
	structa.format
	structa.source
	structa.types
	structa.xml

	Development
	Development installation
	Building the docs
	Test suite

	Changelog
	Release 0.3 (2021-10-27)
	Release 0.2.1 (2021-08-17 … later)
	Release 0.2 (2021-08-17)
	Release 0.1 (2018-12-17)

	License
	Python Module Index
	Index

