
Structa 0.2 Documentation
Release 0.2

Dave Jones

Aug 17, 2021

CONTENTS

1 Installation 1

2 Getting Started 3

3 Real World Data 9

4 Command Line Reference 17

5 Recipes 21

6 API Reference 23

7 Development 27

8 Changelog 29

9 License 31

Python Module Index 33

Index 35

i

ii

CHAPTER

ONE

INSTALLATION

structa is distributed in several formats. The following sections detail installation on a variety of platforms.

1.1 Ubuntu Linux

For Ubuntu Linux, it is simplest to install from the author’s PPA1 as follows (this also ensures you are kept up to date
as new releases are made):

$ sudo add-apt-repository ppa://waveform/ppa
$ sudo apt update
$ sudo apt install structa

If you wish to remove structa:

$ sudo apt remove structa

1.2 Microsoft Windows

Firstly, install a version of Python 32 (this must be Python 3.5 or later), or ensure you have an existing installation of
Python 3.
Ideally, for the purposes of following the Getting Started (page 3) you should add your Python 3 install to the system
PATH variable so that python can be easily run from any command line.
You can install structa with the “pip” tool like so:

C:\Users\me> pip install structa

Upgrading structa can be done via pip too:

C:\Users\me> pip install --upgrade structa

And removal can be performed via pip:

C:\Users\me> pip uninstall structa

1 https://launchpad.net/~waveform/+archive/ppa
2 https://www.python.org/downloads/windows/

1

https://launchpad.net/~waveform/+archive/ppa
https://www.python.org/downloads/windows/

Structa 0.2 Documentation, Release 0.2

1.3 Other Platforms

If your platform is not covered by one of the sections above, structa is available from PyPI and can therefore be
installed with the Python setuptools “pip” tool:

$ pip install structa

On some platforms you may need to use a Python 3 specific alias of pip:

$ pip3 install structa

If you do not have either of these tools available, please install the Python setuptools3 package first.
You can upgrade structa via pip:

$ pip install --upgrade structa

And removal can be performed as follows:

$ pip uninstall structa

3 https://pypi.python.org/pypi/setuptools/

2 Chapter 1. Installation

https://pypi.python.org/pypi/setuptools/

CHAPTER

TWO

GETTING STARTED

Warning: Big fat “unfinished” warning: structa is still very much incomplete at this time and there’s plenty of
rough edges (like not showing CSV column titles).
If you run into unfinished stuff, do check the issues4 first as I may have a ticket for that already. If you run into
genuinely “implemented but broken” stuff, please do file an issue; it’s these things I’m most interested in at this
stage.

Getting the most out of structa is part science, part art. The science part is understanding how structa works and what
knobs it has to twiddle. The art bit is figuring out what to twiddle them to!

2.1 Pre-requisites

You’ll need the following to start this tutorial:
• A structa installation; see Installation (page 1) for more information on this.
• A Python 3 installation; given that structa requires this to run at all, if you’ve got structa installed, you’ve got
this too. However, it’ll help enormously if Python is in your system’s “PATH” so that you can run python scripts
at the command line.

• Some basic command line knowledge. In particular, it’ll help if you’re familiar with shell redirection and
piping5 (note: while that link is on askubuntu.com6 the contents are equally applicable to the vast majority of
UNIX shells, and even to Windows’ cmd!)

2.2 Basic Usage

We’ll start with some basic data structures and see how structa handles them. The following Python script dumps a
list of strings representing integers to stdout in JSON format:

Listing 1: str-nums.py
import sys
import json

json.dump([str(i) for i in range(1000)] * 3, sys.stdout)

This produces output that looks (partially) like this:

4 https://github.com/waveform80/structa/issues
5 https://askubuntu.com/a/172989
6 https://askubuntu.com/

3

https://github.com/waveform80/structa/issues
https://askubuntu.com/a/172989
https://askubuntu.com/a/172989
https://askubuntu.com/

Structa 0.2 Documentation, Release 0.2

["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25",
"26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37",
"38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49",
"50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61",
"62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73",
"74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85",
"86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97",
"98", "99", "100", "101", "102", "103", "104", "105", "106", "107", "108",
"109", "110", "111", "112", "113", "114", "115", "116", "117", "118",
"119", "120", "121", "122", "123", "124", "125", "126", "127", "128",
"129", "130",
// lots more output...
]

We can capture the output in a file and pass this to structa:

$ python3 str-nums.py > str-nums.json
$ structa str-nums.json
[str of int range=0..999 pattern="d"]

Alternatively, we can pipe the output straight to structa:

$ python3 str-nums.py | structa
[str of int range=0..999 pattern="d"]

The output shows that the data contains a list (indicated by the square-brackets surrounding the output) of strings of
integers (“str of int”), which have values between 0 and 999 (inclusive). The “pattern” at the end indicates that the
strings are in decimal (“d”) form (structa would also recognize octal, “o”, and hexadecimal “x” forms of integers).

2.3 Bad Data (--bad-threshold)

Let’s see how structa handles bad data. We’ll add a non-numeric string into our list of numbers:

Listing 2: bad-nums.py
import sys
import json

json.dump(['foo'] + [str(i) for i in range(1000)] * 3, sys.stdout)

What does structa do in the presence of this “corrupt” data?

$ python3 bad-nums.py | structa
[str of int range=0..999 pattern="d"]

Apparently nothing! It may seem odd that structa raised no errors, or even warnings when encountering subtly
incorrect data. However, structa has a “bad threshold” setting (structa --bad-threshold (page 18)) which
means not all data in a given sequence has to match the pattern under test.
This setting defaults to 1% (or 0.01) meaning that up to 1% of the values can fail to match and the pattern will still
be considered valid. If we lower the bad threshold to zero, this is what happens:

$ python3 bad-nums.py | structa --bad-threshold 0
[str range="0".."foo"]

It’s still recognized as a list of strings, but no longer as string representations of integers.
How about mixing types? The following script outputs our errant string, “foo”, along with a list of numbers. However,
note that this time the numbers are integers, not strings of integers. In other words we have a list of a string, and lots

4 Chapter 2. Getting Started

Structa 0.2 Documentation, Release 0.2

of integers:

Listing 3: bad-types.py
import sys
import json

json.dump(['foo'] + list(range(1000)) * 3, sys.stdout)

$ python3 bad-types.py | structa
[value]

In this case, even with the default 1% bad threshold, structa doesn’t exclude the bad data; the analysis simply returns
it as a list of mixed “values”.
This is because structa assumes that the types of data are at least consistent and correct, under the assumption that if
whatever is generating your data hasn’t even got the data types right, you’ve got bigger problems! The bad threshold
mechanism only applies to bad data within a homogenous type (typically bad string representations of numeric or
boolean types).

2.4 Missing Data (--empty-threshold)

Another type of “bad” data commonly encountered is empty strings which are typically used to represent missing
data, and (predictably) structa has another knob that can be twiddled for this: structa --empty-threshold
(page 18). The following script generates a list of strings of integers in which most of the strings (~70%) are blank:

Listing 4: mostly-blank.py
import sys
import json
import random

json.dump([
'' if random.random() < 0.7 else str(random.randint(0, 100))
for i in range(10000)

], sys.stdout)

Despite the vast majority of the data being blank, structa handles this as normal:

$ python3 mostly-blank.py | structa
[str of int range=0..100 pattern="d"]

This is because the default for structa --empty-threshold (page 18) is 99% or 0.99. If the proportion of
blank strings in a field exceeds the empty threshold, the field will simply be marked as a string without any further
processing. Hence, when we re-run this script with the setting turned down to 50%, the output changes:

$ python3 mostly-blank.py | structa --empty-threshold 50%
[str range="".."99"]

Note: For those slightly confused by the above output: structa hasn’t lost the “100” value, but because it’s now
considered a string (not a string of integers), “100” sorts before “99” alphabetically.

2.4. Missing Data (--empty-threshold) 5

Structa 0.2 Documentation, Release 0.2

2.5 Fields or Tables (--field-threshold)

The next major knob that can be twiddled in structa is the structa --field-threshold (page 17). This
is used to distinguish between mappings that act as a “table” (mapping keys to records) and mappings that act as a
record (mapping field-names, typically strings, to their values).
To illustrate the difference between these, consider the following script:

Listing 5: simple-fields.py
import sys
import json
import random

json.dump({
str(flight_id): {

"flight_id": flight_id,
"passengers": random.randint(50, 200),
"from": random.choice([

"MAN", "LON", "LHR", "ABZ", "AMS", "AUS", "BCN",
"BER", "BHX", "BRU", "CHI", "ORK", "DAL", "EDI",

]),
}
for flight_id in range(200)

}, sys.stdout)

The generates a JSON file containing a mapping of mappings which looks something like this snippet (but with a lot
more output):

{
"0": { "flight_id": 0, "passengers": 53, "from": "BHX" },
"1": { "flight_id": 1, "passengers": 157, "from": "AMS" },
"2": { "flight_id": 2, "passengers": 118, "from": "DAL" },
"3": { "flight_id": 3, "passengers": 111, "from": "MAN" },
"4": { "flight_id": 4, "passengers": 192, "from": "BRU" },
"5": { "flight_id": 5, "passengers": 69, "from": "DAL" },
"6": { "flight_id": 6, "passengers": 147, "from": "LON" },
"7": { "flight_id": 7, "passengers": 187, "from": "LON" },
"8": { "flight_id": 8, "passengers": 171, "from": "AMS" },
"9": { "flight_id": 9, "passengers": 89, "from": "DAL" },
"10": { "flight_id": 10, "passengers": 169, "from": "LHR" },
// lots more output...

}

The outer mapping is what structa would consider a “table” since it maps keys (in this case a string representation
of an integer) to records. The inner mappings are what structa would consider “records” since they map a relatively
small number of field names to values.

Note: Record fields don’t have to be simple scalar values (although they are here); they can be complex structures
including lists or indeed further embedded records.

If structa finds mappings with more keys than the threshold, those mappings will be treated as tables. However,
if mappings are found with fewer (or equal) keys to the threshold, they will be analyzed as records. It’s a rather
arbitrary value that (unfortunately) usually requires some fore-knowledge of the data being analyzed. However, it’s
usually quite easy to spot when the threshold is wrong, as we’ll see.
First, let’s take a look at what happens when the threshold is set correctly. When passed to structa, with the default
field threshold of 20, we see the following output:

6 Chapter 2. Getting Started

Structa 0.2 Documentation, Release 0.2

$ python3 simple-fields.py | structa
{

str of int range=0..199 pattern="d": {
'flight_id': int range=0..199,
'from': str range="ABZ".."ORK" pattern="Iii",
'passengers': int range=50..200

}
}

This indicates that structa has recognized the data as consisting of a mapping (indicated by the surrounding braces),
which is keyed by a decimal string representation of an integer (in the range 0 to 199), and the values of which are
another mapping with the keys “flight_id”, “from”, and “passengers”.
The reason the inner mappings were treated as a set of records was because all those mappings had less than 20
entries. The outer mapping had more than 20 entries (200 in this case) and thus was treated as a table.
What happens if we force the field threshold down so low that the inner mappings are also treated as a table?

$ python3 simple-fields.py | structa --field-threshold 2
{

str of int range=0..199 pattern="d": { str range="flight_id".."passengers":␣
↪→value }
}

The inner mappings are now defined simply as mappings of strings (in the range “bar” to “id”, sorted alphabetically)
which map to “value” (an arbitrary mix of types). Anytime you see a mapping of { str: value } in structa’s
output, it’s a fairly good clue that structa --field-threshold (page 17) might be too low.

2.6 Merging structures (--merge-threshold)

2.7 Whitespace

2.6. Merging structures (--merge-threshold) 7

Structa 0.2 Documentation, Release 0.2

8 Chapter 2. Getting Started

CHAPTER

THREE

REAL WORLD DATA

Warning: Big fat “unfinished” warning: structa is still very much incomplete at this time and there’s plenty of
rough edges (like not showing CSV column titles).
If you run into unfinished stuff, do check the issues7 first as I may have a ticket for that already. If you run into
genuinely “implemented but broken” stuff, please do file an issue; it’s these things I’m most interested in at this
stage.

3.1 Pre-requisites

You’ll need the following to start this tutorial:
• A structa installation; see Installation (page 1) for more information on this.
• A Python 3 installation; given that structa requires this to run at all, if you’ve got structa installed, you’ve got
this too. However, it’ll help enormously if Python is in your system’s “PATH” so that you can run python scripts
at the command line.

• The scipy8 library must be installed for the scripts we’re going to be using to generate data. On Debian/Ubuntu
systems you can run the following:

$ sudo apt install python3-scipy

On Windows, or if you’re running in a virtual environment, you should run the following:

$ pip install scipy

• Some basic command line knowledge. In particular, it’ll help if you’re familiar with shell redirection and
piping9 (note: while that link is on askubuntu.com10 the contents are equally applicable to the vast majority of
UNIX shells, and even to Windows’ cmd!)

7 https://github.com/waveform80/structa/issues
8 https://scipy.org/
9 https://askubuntu.com/a/172989
10 https://askubuntu.com/

9

https://github.com/waveform80/structa/issues
https://scipy.org/
https://askubuntu.com/a/172989
https://askubuntu.com/a/172989
https://askubuntu.com/

Structa 0.2 Documentation, Release 0.2

3.2 “Real World” Data

For this tutorial, we’ll use a custom made data-set which will allow us to tweak things and see what’s going on under
structa’s hood a bit more easily.
The following script generates a fairly sizeable JSON file (~11MB) apparently recording various air quality readings
from places which bear absolutely no resemblance whatsoever to my adoptive home city (ahem):

Listing 1: air-quality.py
import sys
import json
import random
import datetime as dt
from scipy.stats import skewnorm

readings = {
stat: (min, max),
'O3': (0, 50),
'NO': (0, 200),
'NO2': (0, 100),
'PM10': (0, 100),
'PM2.5': (0, 100),

}

locations = {
location: {stat: (skew, scale), ...}
'Mancford Peccadillo': {

'O3': (0, 1),
'NO': (5, 1),
'NO2': (0, 1),
'PM10': (10, 3),
'PM2.5': (10, 1),

},
'Mancford Shartson': {

'O3': (-10, 1),
'NO': (10, 1),
'NO2': (0, 1),

},
'Salport': {

'NO': (10, 1),
'NO2': (-10, 1/2),
'PM10': (5, 1/2),
'PM2.5': (5, 1/2),

},
'Prestchester': {

'O3': (1, 1),
'NO': (5, 1/2),
'NO2': (0, 1),
'PM10': (5, 1/2),
'PM2.5': (10, 1/2),

},
'Blackshire': {

'O3': (-10, 1),
'NO': (50, 1/2),
'NO2': (10, 1/2),
'PM10': (10, 1/2),
'PM2.5': (10, 1/2),

},
'St. Wigpools': {

'O3': (0, 1),
'NO': (10, 1),

(continues on next page)

10 Chapter 3. Real World Data

Structa 0.2 Documentation, Release 0.2

(continued from previous page)
'NO2': (5, 3/4),
'PM10': (5, 1/2),
'PM2.5': (5, 1/2),

},
}

def skewfunc(min, max, a=0, scale=1):
s = skewnorm(a)
real_min = s.ppf(0.0001)
real_max = s.ppf(0.9999)
real_range = real_max - real_min
res_range = max - min
def skewrand():

return min + res_range * scale * (s.rvs() - real_min) / real_range
return skewrand

generators = {
location: {

reading: skewfunc(read_min, read_max, skew, scale)
for reading, params in loc_readings.items()
for read_min, read_max in (readings[reading],)
for skew, scale in (params,)

}
for location, loc_readings in locations.items()

}

timestamps = [
dt.datetime(2020, 1, 1) + dt.timedelta(hours=n)
for n in range(10000)

]

data = {
location: {

'euid': 'GB{:04d}A'.format(random.randint(200, 2000)),
'ukid': 'UKA{:05d}'.format(random.randint(100, 800)),
'lat': random.random() + 53.0,
'long': random.random() - 3.0,
'alt': random.randint(5, 100),
'readings': {

reading: {
timestamp.isoformat(): loc_gen()
for timestamp in timestamps

}
for reading, loc_gen in loc_gens.items()

}
}
for location, loc_gens in generators.items()

}

json.dump(data, sys.stdout)

If you run the script it will output JSON on stdout, which you can redirect to a file (or straight to structa, but given
the script takes a while to run you may wish to capture the output to a file for experimentation purposes). Passing the
output to structa should produce output something like this:

$ python3 air-quality.py > air-quality.json
$ structa air-quality.json
{

str range="Blackshire".."St. Wigpools": {
'alt': int range=31..85,
'euid': str range="GB1012A".."GB1958A" pattern="GB1[0-139][13-58][2-37-9]A

↪→", (continues on next page)

3.2. “Real World” Data 11

Structa 0.2 Documentation, Release 0.2

(continued from previous page)
'lat': float range=53.29812..53.6833,
'long': float range=-2.901626..-2.362118,
'readings': {

str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..
↪→2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-5.634479..335.6384␣
↪→}

},
'ukid': str range="UKA00129".."UKA00713" pattern="UKA00[1-24-57][1-38][0-

↪→13579]"
}

}

Note: It should be notable that the output of structa looks rather similar to the end of the air-quality.py script,
where the “data” variable that is ultimately dumped is constructed. This neatly illustrates the purpose of structa: to
summarize repeating structures in a mass of hierarchical data.

Looking at this output we can see that the data consists of a mapping (or Javascript “object”) at the top level, keyed
by strings in the range “Blackshire” to “St. Wigpools” (when sorted).
Under these keys are more mappings which have six keys (which structa has displayed in alphabetical order for ease
of reading):

• “alt” which maps to an integer in some range (in the example above 31 to 85, but this will likely be different
for you)

• “euid” which maps to a string which always started with “GB” and is followed by several numerals
• “lat” which maps to a floating point value around 53
• “long” which maps to another floating point roughly around -2
• “ukid” which maps to a string always starting with UKA00 followed by several numerals
• And finally, “readings” which maps to another dictionary of strings …
• Which maps to another dictionary which is keyed by timestamps in string format, which map to floating point
values

If you have a terminal capable of ANSI codes, you may note that types are displayed in a different color (to distinguish
them from literals like the “ukid” and “euid” keys), as are patterns within fixed length strings, and various keywords
like “range=”.
You may also notice that several of the types (definitely the outer “str”, but possibly other types within the top-
level dictionary) are underlined. This indicates that these values are unique throughout the entire dataset (suitable as
top-level keys if entered into a database).

3.3 Optional Keys

Let’s explore how structa handles various “problems” in the data. Firstly, we’ll make a copy of our script and add a
chunk of code to remove approximately half of the altitude readings:

$ cp air-quality.py air-quality-opt.py
$ editor air-quality-opt.py

Listing 2: air-quality-opt.py
data = {

location: {
'euid': 'GB{:04d}A'.format(random.randint(200, 2000)),

(continues on next page)

12 Chapter 3. Real World Data

Structa 0.2 Documentation, Release 0.2

(continued from previous page)
'ukid': 'UKA{:05d}'.format(random.randint(100, 800)),
'lat': random.random() + 53.0,
'long': random.random() - 3.0,
'alt': random.randint(5, 100),
'readings': {

reading: {
timestamp.isoformat(): loc_gen()
for timestamp in timestamps

}
for reading, loc_gen in loc_gens.items()

}
}
for location, loc_gens in generators.items()

}

for location in data:
if random.random() < 0.5:

del data[location]['alt']

json.dump(data, sys.stdout)

What does structa make of this?

$ python3 air-quality-opt.py > air-quality-opt.json
$ structa air-quality-opt.json
{

str range="Blackshire".."St. Wigpools": {
'alt'?: int range=31..85,
'euid': str range="GB1012A".."GB1958A" pattern="GB1[0-139][13-58][2-37-9]A

↪→",
'lat': float range=53.29812..53.6833,
'long': float range=-2.901626..-2.362118,
'readings': {

str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..
↪→2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-5.634479..335.6384␣
↪→}

},
'ukid': str range="UKA00129".."UKA00713" pattern="UKA00[1-24-57][1-38][0-

↪→13579]"
}

}

Note that a question-mark has now been appended to the “alt” key in the second-level dictionary (if your terminal
supports color codes, this should appear in red). This indicates that the “alt” key is optional and not present in every
single dictionary at that level.

3.4 “Bad” Data

Next, we’ll make another script (a copy of air-quality-opt.py), which adds some more code to “corrupts”
some of the timestamps:

$ cp air-quality-opt.py air-quality-bad.py
$ editor air-quality-bad.py

Listing 3: air-quality-bad.py
for location in data:

if random.random() < 0.5:

(continues on next page)

3.4. “Bad” Data 13

Structa 0.2 Documentation, Release 0.2

(continued from previous page)
reading = random.choice(list(data[location]['readings']))
date = random.choice(list(data[location]['readings'][reading]))
value = data[location]['readings'][reading].pop(date)
data[location]['readings'][reading]['2020-02-31T12:34:56'] = value

json.dump(data, sys.stdout)

What does structa make of this?

$ python3 air-quality.py > air-quality-bad.json
$ structa air-quality-bad.json
{

str range="Blackshire".."St. Wigpools": {
'alt'?: int range=31..85,
'euid': str range="GB1012A".."GB1958A" pattern="GB1[0-139][13-58][2-37-9]A

↪→",
'lat': float range=53.29812..53.6833,
'long': float range=-2.901626..-2.362118,
'readings': {

str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..
↪→2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-5.634479..335.6384␣
↪→}

},
'ukid': str range="UKA00129".."UKA00713" pattern="UKA00[1-24-57][1-38][0-

↪→13579]"
}

}

Apparently nothing! It may seem odd that structa raised no errors, or even warnings when encountering subtly
incorrect data. One might (incorrectly) assume that structa just thinks anything that vaguely looks like a timestamp
in a string is such.
For the avoidance of doubt, this is not the case: structa does attempt to convert timestamps correctly and does not
think February 31st is a valid date (unlike certain databases!). However, structa does have a “bad threshold” setting
(structa --bad-threshold (page 18)) which means not all data in a given sequence has to match the pattern
under test.

3.5 Whitespace

By default, structa strips whitespace from strings prior to analysis. This is probably not necessary for the vast ma-
jority of modern datasets, but it’s a reasonably safe default, and can be controlled with the structa --strip-
whitespace (page 18) and structa --no-strip-whitespace (page 18) options in any case.
One other option that is affected by whitespace stripping is the “empty” threshold. This is the proportion of string
values that are permitted to be empty (and thus ignored) when analysing a field of data. By default, this is 99%meaning
the vast majority of a given field can be blank, and structa will still analyze the remaining strings to determine whether
they represent integers, datetimes, etc.
If the proportion of blank strings in a field exceeds the empty threshold, the field will simply be marked as a string
without any further processing.
For example:

Listing 4: examples/mostly-blank.py
import sys
import json
import random

(continues on next page)

14 Chapter 3. Real World Data

Structa 0.2 Documentation, Release 0.2

(continued from previous page)
json.dump([

'' if random.random() < 0.7 else str(random.randint(0, 100))
for i in range(10000)

], sys.stdout)

This script outputs (as JSON) a list of strings of integers, roughly 70% of which will be blank. By default, structa is
happy with this:

$ python3 mostly-blank.py | structa
[str of int range=0..100 pattern="d"]

However, if we force the empty threshold down below 70%:

3.5. Whitespace 15

Structa 0.2 Documentation, Release 0.2

16 Chapter 3. Real World Data

CHAPTER

FOUR

COMMAND LINE REFERENCE

4.1 Synopsis

structa [-h] [--version] [-f {auto,csv,json,yaml}] [-e ENCODING]
[--encoding-strict] [--no-encoding-strict]
[-F INT] [-M NUM] [-B NUM] [-E NUM] [--str-limit NUM]
[--hide-count] [--show-count] [--hide-lengths] [--show-lengths]
[--hide-pattern] [--show-pattern]
[--hide-range] [--show-range {hidden,limits,median,quartiles,graph}]
[--hide-samples] [--show-samples]
[--min-timestamp WHEN] [--max-timestamp WHEN]
[--max-numeric-len LEN] [--sample-bytes SIZE]
[--strip-whitespace] [--no-strip-whitespace]
[--csv-format FIELD[QUOTE]] [--yaml-safe] [--no-yaml-safe]
[file [file ...]]

4.2 Positional Arguments

file
The data-file(s) to analyze; if this is - or unspecified then stdin will be read for the data; if multiple files are
specified all will be read and analyzed as an array of similar structures

4.3 Optional Arguments

-h, --help
show this help message and exit

--version
show program’s version number and exit

-f {auto,csv,json,yaml}, --format {auto,csv,json,yaml}
The format of the data file; if this is unspecified, it will be guessed based on the first bytes of the file; valid
choices are auto (the default), csv, or json

-e ENCODING, --encoding ENCODING
The string encoding of the file, e.g. utf-8 (default: auto). If “auto” then the file will be sampled to determine
the encoding (see --sample-bytes (page 18))

--encoding-strict, --no-encoding-strict
Controls whether character encoding is strictly enforced and will result in an error if invalid characters are
found during analysis. If disabled, a replacement character will be inserted for invalid sequences. The default
is strict decoding

17

Structa 0.2 Documentation, Release 0.2

-F INT, --field-threshold INT
If the number of distinct keys in a map, or columns in a tuple is less than this then they will be considered
distinct fields instead of being lumped under a generic type like str (default: 20)

-M NUM, --merge-threshold NUM
The proportion of mapping fields which must match other mappings for them to be considered potential merge
candidates (default: 50%)

-B NUM, --bad-threshold NUM
The proportion of string values which are allowed to mismatch a pattern without preventing the pattern from
being reported; the proportion of “bad” data permitted in a field (default: 1%)

-E NUM, --empty-threshold NUM
The proportion of string values permitted to be empty without preventing the pattern from being reported; the
proportion of “empty” data permitted in a field (default: 99%)

--str-limit NUM
The length beyond which only the lengths of strs will be reported; below this the actual value of the string will
be displayed (default: 20)

--hide-count, --show-count
If set, show the count of items in containers, the count of unique scalar values, and the count of all sample
values (if --show-samples (page 18) is set). If disabled, counts will be hidden

--hide-lengths, --show-lengths
If set, display the range of lengths of string fields in the same format as specified by--show-range (page 18)

--hide-pattern, --show-pattern
If set, show the pattern determined for fixed length string fields. If disabled, pattern information will be hidden

--hide-range, --show-range {hidden,limits,median,quartiles,graph}
Show the range of numeric (and temporal) fields in a variety of forms. The default is ‘limits’ which simply
displays the minimum and maximum; ‘median’ includes the median between these; ‘quartiles’ shows all three
quartiles between the minimum and maximum; ‘graph’ displays a crude chart showing the positions of the
quartiles relative to the limits. Use --hide-range (page 18) to hide all range info

--hide-samples, --show-samples
If set, show samples of non-unique scalar values including the most and least common values. If disabled,
samples will be hidden

--min-timestamp WHEN
The minimum timestamp to use when guessing whether floating point fields represent UNIX timestamps (de-
fault: 20 years). Can be specified as an absolute timestamp (in ISO-8601 format) or a duration to be subtracted
from the current timestamp

--max-timestamp WHEN
The maximum timestamp to use when guessing whether floating point fields represent UNIX timestamps (de-
fault: 10 years). Can be specified as an absolute timestamp (in ISO-8601 format) or a duration to be added to
the current timestamp

--max-numeric-len LEN
The maximum number of characters that a number, integer or floating-point, may use in its representation
within the file. Defaults to 30

--sample-bytes SIZE
The number of bytes to sample from the file for the purposes of encoding and format detection. Defaults to
1m. Typical suffixes of k, m, g, etc. may be specified

--strip-whitespace, --no-strip-whitespace
Controls whether leading and trailing found in strings in the will be left alone and thus included or excluded in
any data-type analysis. The default is to strip whitespace

--csv-format FIELD[QUOTE]
The characters used to delimit fields and strings in a CSV file. Can be specified as a single character which will
be used as the field delimiter, or two characters in which case the second will be used as the string quotation

18 Chapter 4. Command Line Reference

Structa 0.2 Documentation, Release 0.2

character. Can also be “auto” which indicates the delimiters should be detected. Bear in mind that some
characters may require quoting for the shell, e.g. ‘;”’

--yaml-safe, --no-yaml-safe
Controls whether the “safe” or “unsafe” YAML loader is used to parse YAML files. The default is the “safe”
parser. Only use --no-yaml-safe (page 19) if you trust the source of your data

4.3. Optional Arguments 19

Structa 0.2 Documentation, Release 0.2

20 Chapter 4. Command Line Reference

CHAPTER

FIVE

RECIPES

The following sections cover analyzing various common data scenarios with structa, and how structa’s various options
should be set to handle them.

5.1 Analyzing from a URL

While structa itself can’t read URLs directly, the fact you can pipe data to it makes it ideal for use with something
like curl11:

$ curl -s https://piwheels.org/packages.json | structa
[

(
str,
int range=0..32.8K,
int range=0..1.7M

)
]

5.2 Dealing with large records

In the Getting Started (page 3) we saw the following script, which generates a mapping of mappings, for the purposes
of learning about structa --field-threshold (page 17):

Listing 1: simple-fields.py
import sys
import json
import random

json.dump({
str(flight_id): {

"flight_id": flight_id,
"passengers": random.randint(50, 200),
"from": random.choice([

"MAN", "LON", "LHR", "ABZ", "AMS", "AUS", "BCN",
"BER", "BHX", "BRU", "CHI", "ORK", "DAL", "EDI",

]),
}
for flight_id in range(200)

}, sys.stdout)

We saw what happens when the threshold is too low:
11 https://curl.se/

21

https://curl.se/

Structa 0.2 Documentation, Release 0.2

$ python3 simple-fields.py | structa --field-threshold 2
{

str of int range=0..199 pattern="d": { str range="flight_id".."passengers":␣
↪→value }
}

What happens if the threshold is set too high, resulting in the outer mapping being treated as a (very large!) record?

$ python3 simple-fields.py | structa --field-threshold 300
{

str of int range=0..199 pattern="d": {
'flight_id': int range=0..199,
'from': str range="ABZ".."ORK" pattern="[A-EL-MO][A-EHMORU][IK-LNR-SUXZ]",
'passengers': int range=50..199

}
}

Curiously it seems to have worked happily anyway, although the pattern of the “from” field is now considerably more
complex. The reasons for this are relatively complicated, but has to do with a later pass of structa’s algorithmmerging
common sub-structures of records. The merging process unfortunately handles certain things (like the merging of
string field patterns) rather crudely.
Hence, while it’s generally safe to bump structa --field-threshold (page 17) up quite high whenever you
need to, be aware that it will:

• significantly slow down analysis of large files (because the merging process is quite slow)
• complicate the pattern analysis of repeated string fields and a few other things (e.g. string representations of
date-times)

In other words, whenever you find yourself in a situation where you need to bump up the field threshold, a reasonable
procedure to follow is:

1. Bump the threshold very high (e.g. 1000) and run the analysis with structa --show-count (page 18)
enabled.

2. Run the analysis again with the field threshold set below the count of the outer container(s), but above the count
of the inner record mappings

The first run will probably be quite slow, but the second run will be much faster and will produce better output.

22 Chapter 5. Recipes

CHAPTER

SIX

API REFERENCE

In addition to being a utility, structa can also be used as an API from Python (either in a script, or just at the console).
The primary class of interest will generally be Analyzer in the structa.analyzer (page 23) module, but it
is important to understand the various classes in the structa.types (page 24) module to interpret the output of
the analyzer.

6.1 Modules

6.1.1 structa.analyzer

The structa.analyzer (page 23) module contains the Analyzer class which is the primary entry point for
using structa’s as an API. It can be constructed without any arguments, and the analyze() method can be im-
mediately used to determine the structure of some data. The merge() method can be used to further refine the
returned structure, and measure() can be used before-hand if you wish to use the progress callback to track the
progress of long analysis runs.
A typical example of basic usage would be:

from structa.analyzer import Analyzer

data = {
str(i): i
for i in range(1000)

}
an = Analyzer()
structure = an.analyze(data)
print(structure)

The structure returned byanalyze() (and bymerge()) will be an instance of one of the classes in thestructa.
types (page 24) module, all of which have sensible str12 and repr()13 output.
A more complete example, using Source to figure out the source format and encoding:

from structa.analyzer import Analyzer
from structa.source import Source
from urllib.request import urlopen

with urlopen('https://usn.ubuntu.com/usn-db/database-all.json') as f:
src = Source(data)
an = Analyzer()
an.measure(src.data)
structure = an.analyze(src.data)
structure = an.merge(structure)
print(structure)

12 https://docs.python.org/3.8/library/stdtypes.html#str
13 https://docs.python.org/3.8/library/functions.html#repr

23

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#repr

Structa 0.2 Documentation, Release 0.2

6.1.2 structa.chars

The structa.chars (page 24) module provides classes and constants for defining and manipulating character
classes (in the sense of regular expressions14). The primary class of interest is CharClass, but most uses can likely
be covered by the set of constants defined in the module.

Constants

structa.chars.oct_digit
Represents any valid digit in base 8 (octal).

structa.chars.dec_digit
Represents any valid digit in base 10 (decimal).

structa.chars.hex_digit
Represents any valid digit in base 16 (hexidecimal).

structa.chars.ident_first
Represents any character which is valid as the first character of a Python identifier.

structa.chars.ident_char
Represents any character which is valid within a Python identifier.

structa.chars.any_char
Represents any valid character (an instance of AnyChar).

6.1.3 structa.collections

6.1.4 structa.conversions

6.1.5 structa.errors

The structa.errors (page 24) module defines all the custom exception and warning classes used in structa.

6.1.6 structa.format

Thestructa.format (page 24)module contains various simple routines for “nicely” formatting certain structures
for output.

6.1.7 structa.source

6.1.8 structa.types

Thestructa.types (page 24)module defines the class hierarchy used to represent the structural types of analyzed
data. The root of the hierarchy is the Type class. The rest of the hierarchy is illustrated in the chart below:

14 https://en.wikipedia.org/wiki/Regular_expression

24 Chapter 6. API Reference

https://en.wikipedia.org/wiki/Regular_expression

Structa 0.2 Documentation, Release 0.2

6.1.9 structa.xml

The structa.xml (page 25) module provides methods for generating and manipulating XML, primarily in the
form of xml.etree.ElementTree15 objects. The main class of interest is ElementFactory, which can be
used to generate entire element-tree documents in a functional manner.
The xml() function can be used in a similar manner to str16 or repr()17 to generate XML representations of
supported objects (most classes within structa.types (page 24) support this). Finally, get_transform()
can be used to obtain XSLT trees defined by structa (largely for display purposes).

15 https://docs.python.org/3.8/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
16 https://docs.python.org/3.8/library/stdtypes.html#str
17 https://docs.python.org/3.8/library/functions.html#repr

6.1. Modules 25

https://docs.python.org/3.8/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#repr

Structa 0.2 Documentation, Release 0.2

26 Chapter 6. API Reference

CHAPTER

SEVEN

DEVELOPMENT

The main GitHub repository for the project can be found at:
https://github.com/waveform80/structa

The project is currently in its early stages, but is quite useable and the documentation, while incomplete, should be
useful to both users and developers wishing to hack on the project itself. The test suite is also nearing full coverage.

7.1 Development installation

If you wish to develop structa, obtain the source by cloning the GitHub repository and then use the “develop” target
of the Makefile which will install the package as a link to the cloned repository allowing in-place development. The
following example demonstrates this method within a virtual Python environment:

$ sudo apt install build-essential git virtualenvwrapper

After installing virtualenvwrapper you’ll need to restart your shell before commands like mkvirtualenv
will operate correctly. Once you’ve restarted your shell, continue:

$ cd
$ mkvirtualenv -p /usr/bin/python3 structa
$ workon structa
(structa) $ git clone https://github.com/waveform80/structa.git
(structa) $ cd structa
(structa) $ make develop

To pull the latest changes from git into your clone and update your installation:

$ workon structa
(structa) $ cd ~/structa
(structa) $ git pull
(structa) $ make develop

To remove your installation, destroy the sandbox and the clone:

(structa) $ deactivate
$ rmvirtualenv structa
$ rm -rf ~/structa

27

https://github.com/waveform80/structa

Structa 0.2 Documentation, Release 0.2

7.2 Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is used for conversion of SVGs to
other formats, Graphviz is used for rendering certain charts, and TeX Live is required for building PDF output. The
following command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended texlive-xetex graphviz inkscape \
python3-sphinx python3-sphinx-rtd-theme latexmk xindy

Once these are installed, you can use the “doc” target to build the documentation in all supported formats (HTML,
ePub, and PDF):

$ workon structa
(structa) $ cd ~/structa
(structa) $ make doc

However, the easiest way to develop the documentation is with the “preview” target which will build the HTML
version of the docs, and start a web-server to preview the output. The web-server will then watch for source changes
(in both the documentation source, and the application’s source) and rebuild the HTML automatically as required:

$ workon structa
(structa) $ cd ~/structa
(structa) $ make preview

The HTML output is written to build/html while the PDF output goes to build/latex.

7.3 Test suite

If you wish to run the structa test suite, follow the instructions in Development installation (page 27) above and then
make the “test” target within the sandbox:

$ workon structa
(structa) $ cd ~/structa
(structa) $ make test

The test suite is also setup for usage with the tox utility, in which case it will attempt to execute the test suite with
all supported versions of Python. If you are developing under Ubuntu you may wish to look into the Dead Snakes
PPA18 in order to install old/new versions of Python; the tox setup should work with the version of tox shipped with
Ubuntu Focal, but more features (like parallel test execution) are available with later versions.
For example, to execute the test suite under tox, skipping interpreter versions which are not installed:

$ tox -s

To execute the test suite under all installed interpreter versions in parallel, using as many parallel tasks as there are
CPUs, then displaying a combined report of coverage from all environments:

$ tox -p auto -s
$ coverage combine .coverage.py*
$ coverage report

18 https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

28 Chapter 7. Development

https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa
https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

CHAPTER

EIGHT

CHANGELOG

8.1 Release 0.2 (2021-08-17)

• Better tuple analysis (#419) which was a pre-requisite for…
• Added CSV support (#520)
• Added some pretty progress output (#621)
• Prettier output (#822)
• Added documentation (#923)
• Added YAML support (#1024)
• Better elimination of common sub-trees (#1225)
• Multi-file input support (#1526)

8.2 Release 0.1 (2018-12-17)

• Initial commit of something that works … ish

19 https://github.com/waveform80/structa/issues/4
20 https://github.com/waveform80/structa/issues/5
21 https://github.com/waveform80/structa/issues/6
22 https://github.com/waveform80/structa/issues/8
23 https://github.com/waveform80/structa/issues/9
24 https://github.com/waveform80/structa/issues/10
25 https://github.com/waveform80/structa/issues/12
26 https://github.com/waveform80/structa/issues/15

29

https://github.com/waveform80/structa/issues/4
https://github.com/waveform80/structa/issues/5
https://github.com/waveform80/structa/issues/6
https://github.com/waveform80/structa/issues/8
https://github.com/waveform80/structa/issues/9
https://github.com/waveform80/structa/issues/10
https://github.com/waveform80/structa/issues/12
https://github.com/waveform80/structa/issues/15

Structa 0.2 Documentation, Release 0.2

30 Chapter 8. Changelog

CHAPTER

NINE

LICENSE

This file is part of structa.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or see <https:
//www.gnu.org/licenses/>.

31

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

Structa 0.2 Documentation, Release 0.2

32 Chapter 9. License

PYTHON MODULE INDEX

s
structa.analyzer, 23
structa.chars, 24
structa.collections, 24
structa.conversions, 24
structa.errors, 24
structa.format, 24
structa.source, 24
structa.types, 24
structa.xml, 25

33

Structa 0.2 Documentation, Release 0.2

34 Python Module Index

INDEX

Symbols
-B NUM

structa command line option, 18
-E NUM

structa command line option, 18
-F INT

structa command line option, 17
-M NUM

structa command line option, 18
--bad-threshold NUM

structa command line option, 18
--csv-format FIELD[QUOTE]

structa command line option, 18
--empty-threshold NUM

structa command line option, 18
--encoding ENCODING

structa command line option, 17
--encoding-strict

structa command line option, 17
--field-threshold INT

structa command line option, 17
--format {auto,csv,json,yaml}

structa command line option, 17
--help

structa command line option, 17
--hide-count

structa command line option, 18
--hide-lengths

structa command line option, 18
--hide-pattern

structa command line option, 18
--hide-range

structa command line option, 18
--hide-samples

structa command line option, 18
--max-numeric-len LEN

structa command line option, 18
--max-timestamp WHEN

structa command line option, 18
--merge-threshold NUM

structa command line option, 18
--min-timestamp WHEN

structa command line option, 18
--no-encoding-strict

structa command line option, 17
--no-strip-whitespace

structa command line option, 18
--no-yaml-safe

structa command line option, 19
--sample-bytes SIZE

structa command line option, 18
--show-count

structa command line option, 18
--show-lengths

structa command line option, 18
--show-pattern

structa command line option, 18
--show-range {hid-

den,limits,median,quartiles,graph}
structa command line option, 18

--show-samples
structa command line option, 18

--str-limit NUM
structa command line option, 18

--strip-whitespace
structa command line option, 18

--version
structa command line option, 17

--yaml-safe
structa command line option, 19

-e ENCODING
structa command line option, 17

-f {auto,csv,json,yaml}
structa command line option, 17

-h
structa command line option, 17

A
any_char (in module structa.chars), 24

D
dec_digit (in module structa.chars), 24

F
file

structa command line option, 17

H
hex_digit (in module structa.chars), 24

I
ident_char (in module structa.chars), 24

35

Structa 0.2 Documentation, Release 0.2

ident_first (in module structa.chars), 24

M
module

structa.analyzer, 23
structa.chars, 24
structa.collections, 24
structa.conversions, 24
structa.errors, 24
structa.format, 24
structa.source, 24
structa.types, 24
structa.xml, 25

O
oct_digit (in module structa.chars), 24

S
structa command line option

-B NUM, 18
-E NUM, 18
-F INT, 17
-M NUM, 18
--bad-threshold NUM, 18
--csv-format FIELD[QUOTE], 18
--empty-threshold NUM, 18
--encoding ENCODING, 17
--encoding-strict, 17
--field-threshold INT, 17
--format {auto,csv,json,yaml}, 17
--help, 17
--hide-count, 18
--hide-lengths, 18
--hide-pattern, 18
--hide-range, 18
--hide-samples, 18
--max-numeric-len LEN, 18
--max-timestamp WHEN, 18
--merge-threshold NUM, 18
--min-timestamp WHEN, 18
--no-encoding-strict, 17
--no-strip-whitespace, 18
--no-yaml-safe, 19
--sample-bytes SIZE, 18
--show-count, 18
--show-lengths, 18
--show-pattern, 18
--show-range {hid-

den,limits,median,quartiles,graph},
18

--show-samples, 18
--str-limit NUM, 18
--strip-whitespace, 18
--version, 17
--yaml-safe, 19
-e ENCODING, 17
-f {auto,csv,json,yaml}, 17
-h, 17

file, 17
structa.analyzer

module, 23
structa.chars

module, 24
structa.collections

module, 24
structa.conversions

module, 24
structa.errors

module, 24
structa.format

module, 24
structa.source

module, 24
structa.types

module, 24
structa.xml

module, 25

36 Index

	Installation
	Ubuntu Linux
	Microsoft Windows
	Other Platforms

	Getting Started
	Pre-requisites
	Basic Usage
	Bad Data (--bad-threshold)
	Missing Data (--empty-threshold)
	Fields or Tables (--field-threshold)
	Merging structures (--merge-threshold)
	Whitespace

	Real World Data
	Pre-requisites
	“Real World” Data
	Optional Keys
	“Bad” Data
	Whitespace

	Command Line Reference
	Synopsis
	Positional Arguments
	Optional Arguments

	Recipes
	Analyzing from a URL
	Dealing with large records

	API Reference
	Modules
	structa.analyzer
	structa.chars
	Constants

	structa.collections
	structa.conversions
	structa.errors
	structa.format
	structa.source
	structa.types
	structa.xml

	Development
	Development installation
	Building the docs
	Test suite

	Changelog
	Release 0.2 (2021-08-17)
	Release 0.1 (2018-12-17)

	License
	Python Module Index
	Index

