

structa

structa is a small utility for analyzing repeating structures in large data
sources. Typically this is something like a document oriented database in JSON
format, or a CSV file of a database dump, or a YAML document.

Usage

Use from the command line:

structa <filename>

The usual --help and --version switches are available for more
information. The full documentation may also help understanding the myriad
switches!

Examples

The People in Space API shows the number of people currently in space, and
their names and craft name:

curl -s http://api.open-notify.org/astros.json | structa

Output:

{
 'message': str range="success" pattern="success",
 'number': int range=10,
 'people': [
 {
 'craft': str range="ISS".."Tiangong",
 'name': str range="Akihiko Hoshide".."Thomas Pesquet"
 }
]
}

The Python Package Index (PyPI) provides a JSON API for packages:

curl -s https://pypi.org/pypi/numpy/json | structa

Output:

{
 'info': { str: value },
 'last_serial': int range=9.0M,
 'releases': {
 str range="0.9.6".."1.9.3": [
 {
 'comment_text': str,
 'digests': {
 'md5': str pattern="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
 'sha256': str pattern="xx"
 },
 'downloads': int range=-1,
 'filename': str,
 'has_sig': bool,
 'md5_digest': str pattern="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
 'packagetype': str range="bdist_wheel".."sdist",
 'python_version': str range="2.5".."source",
 'requires_python': value,
 'size': int range=1.9M..24.5M,
 'upload_time': str of timestamp range=2006-12-02 02:07:43..2020-12-25 03:30:00 pattern=%Y-%m-%dT%H:%M:%S,
 'upload_time_iso_8601': str of timestamp range=2009-04-06 06:19:25..2020-12-25 03:30:00 pattern=%Y-%m-%dT%H:%M:%S.%f%z,
 'url': URL,
 'yanked': bool,
 'yanked_reason': value
 }
]
 },
 'urls': [
 {
 'comment_text': str range="",
 'digests': {
 'md5': str pattern="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
 'sha256': str pattern="xx"
 },
 'downloads': int range=-1,
 'filename': str,
 'has_sig': bool,
 'md5_digest': str pattern="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
 'packagetype': str range="bdist_wheel" pattern="bdist_wheel",
 'python_version': str range="cp36".."pp36" pattern="Ip3d",
 'requires_python': str range=">=3.6" pattern=">=3.6",
 'size': int range=7.3M..15.4M,
 'upload_time': str of timestamp range=2020-11-02 15:46:22..2020-11-02 16:18:20 pattern=%Y-%m-%dT%H:%M:%S,
 'upload_time_iso_8601': str of timestamp range=2020-11-02 15:46:22..2020-11-02 16:18:20 pattern=%Y-%m-%dT%H:%M:%S.%f%z,
 'url': URL,
 'yanked': bool,
 'yanked_reason': value
 }
]
}

The Ubuntu Security Notices database contains the list of all security
issues in releases of Ubuntu (warning, this one takes some time to analyze and
eats about a gigabyte of RAM while doing so):

curl -s https://usn.ubuntu.com/usn-db/database.json | structa

Output:

{
 str range="1430-1".."4630-1" pattern="dddd-d": {
 'action'?: str,
 'cves': [str],
 'description': str,
 'id': str range="1430-1".."4630-1" pattern="dddd-d",
 'isummary'?: str,
 'releases': {
 str range="artful".."zesty": {
 'allbinaries'?: {
 str: { 'version': str }
 },
 'archs'?: {
 str range="all".."source": {
 'urls': {
 URL: {
 'md5': str pattern="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
 'size': int range=20..1.2G
 }
 }
 }
 },
 'binaries': {
 str: { 'version': str }
 },
 'sources': {
 str: {
 'description': str,
 'version': str
 }
 }
 }
 },
 'summary': str,
 'timestamp': float of timestamp range=2012-04-27 12:57:41..2020-11-11 18:01:48,
 'title': str
 }
}

Contents

	Installation

	Getting Started

	Real World Data

	Command Line Reference

	Recipes

	API Reference

	Development

	Changelog

	License

Indexes

	Index

	Search Page

Installation

structa is distributed in several formats. The following sections detail
installation on a variety of platforms.

Ubuntu Linux

For Ubuntu Linux, it is simplest to install from the author’s PPA as follows
(this also ensures you are kept up to date as new releases are made):

$ sudo add-apt-repository ppa://waveform/ppa
$ sudo apt update
$ sudo apt install structa

If you wish to remove structa:

$ sudo apt remove structa

Microsoft Windows

Firstly, install a version of Python 3 (this must be Python 3.5 or later),
or ensure you have an existing installation of Python 3.

Ideally, for the purposes of following the Getting Started you should add
your Python 3 install to the system PATH variable so that python can be easily
run from any command line.

You can install structa with the “pip” tool like so:

C:\Users\me> pip install structa

Upgrading structa can be done via pip too:

C:\Users\me> pip install --upgrade structa

And removal can be performed via pip:

C:\Users\me> pip uninstall structa

Other Platforms

If your platform is not covered by one of the sections above, structa is
available from PyPI and can therefore be installed with the Python setuptools
“pip” tool:

$ pip install structa

On some platforms you may need to use a Python 3 specific alias of pip:

$ pip3 install structa

If you do not have either of these tools available, please install the Python
setuptools package first.

You can upgrade structa via pip:

$ pip install --upgrade structa

And removal can be performed as follows:

$ pip uninstall structa

Getting Started

Warning

Big fat “unfinished” warning: structa is still very much incomplete at this
time and there’s plenty of rough edges (like not showing CSV column
titles).

If you run into unfinished stuff, do check the issues first as I may
have a ticket for that already. If you run into genuinely “implemented but
broken” stuff, please do file an issue; it’s these things I’m most
interested in at this stage.

Getting the most out of structa is part science, part art. The science part is
understanding how structa works and what knobs it has to twiddle. The art bit
is figuring out what to twiddle them to!

Pre-requisites

You’ll need the following to start this tutorial:

	A structa installation; see Installation for more information on this.

	A Python 3 installation; given that structa requires this to run at all, if
you’ve got structa installed, you’ve got this too. However, it’ll help
enormously if Python is in your system’s “PATH” so that you can run python
scripts at the command line.

	Some basic command line knowledge. In particular, it’ll help if you’re
familiar with shell redirection and piping (note: while that link is on
askubuntu.com the contents are equally applicable to the vast majority of
UNIX shells, and even to Windows’ cmd!)

Basic Usage

We’ll start with some basic data structures and see how structa handles them.
The following Python script dumps a list of strings representing integers to
stdout in JSON format:

str-nums.py

import sys
import json

json.dump([str(i) for i in range(1000)] * 3, sys.stdout)

This produces output that looks (partially) like this:

["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25",
"26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37",
"38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49",
"50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61",
"62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73",
"74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85",
"86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97",
"98", "99", "100", "101", "102", "103", "104", "105", "106", "107", "108",
"109", "110", "111", "112", "113", "114", "115", "116", "117", "118",
"119", "120", "121", "122", "123", "124", "125", "126", "127", "128",
"129", "130",
// lots more output...
]

We can capture the output in a file and pass this to structa:

$ python3 str-nums.py > str-nums.json
$ structa str-nums.json
[str of int range=0..999 pattern="d"]

Alternatively, we can pipe the output straight to structa:

$ python3 str-nums.py | structa
[str of int range=0..999 pattern="d"]

The output shows that the data contains a list (indicated by the
square-brackets surrounding the output) of strings of integers (“str of int”),
which have values between 0 and 999 (inclusive). The “pattern” at the end
indicates that the strings are in decimal (“d”) form (structa would also
recognize octal, “o”, and hexadecimal “x” forms of integers).

Bad Data (--bad-threshold)

Let’s see how structa handles bad data. We’ll add a non-numeric string into our
list of numbers:

bad-nums.py

import sys
import json

json.dump(['foo'] + [str(i) for i in range(1000)] * 3, sys.stdout)

What does structa do in the presence of this “corrupt” data?

$ python3 bad-nums.py | structa
[str of int range=0..999 pattern="d"]

Apparently nothing! It may seem odd that structa raised no errors, or even
warnings when encountering subtly incorrect data. However, structa has a “bad
threshold” setting (structa --bad-threshold) which means not all data
in a given sequence has to match the pattern under test.

This setting defaults to 1% (or 0.01) meaning that up to 1% of the values can
fail to match and the pattern will still be considered valid. If we lower the
bad threshold to zero, this is what happens:

$ python3 bad-nums.py | structa --bad-threshold 0
[str range="0".."foo"]

It’s still recognized as a list of strings, but no longer as string
representations of integers.

How about mixing types? The following script outputs our errant string, “foo”,
along with a list of numbers. However, note that this time the numbers are
integers, not strings of integers. In other words we have a list of a string,
and lots of integers:

bad-types.py

import sys
import json

json.dump(['foo'] + list(range(1000)) * 3, sys.stdout)

$ python3 bad-types.py | structa
[value]

In this case, even with the default 1% bad threshold, structa doesn’t exclude
the bad data; the analysis simply returns it as a list of mixed “values”.

This is because structa assumes that the types of data are at least
consistent and correct, under the assumption that if whatever is generating
your data hasn’t even got the data types right, you’ve got bigger problems! The
bad threshold mechanism only applies to bad data within a homogenous type
(typically bad string representations of numeric or boolean types).

Missing Data (--empty-threshold)

Another type of “bad” data commonly encountered is empty strings which are
typically used to represent missing data, and (predictably) structa has
another knob that can be twiddled for this: structa
--empty-threshold. The following script generates a list of strings of
integers in which most of the strings (~70%) are blank:

mostly-blank.py

import sys
import json
import random

json.dump([
 '' if random.random() < 0.7 else str(random.randint(0, 100))
 for i in range(10000)
], sys.stdout)

Despite the vast majority of the data being blank, structa handles this as
normal:

$ python3 mostly-blank.py | structa
[str of int range=0..100 pattern="d"]

This is because the default for structa --empty-threshold is 99% or
0.99. If the proportion of blank strings in a field exceeds the empty
threshold, the field will simply be marked as a string without any further
processing. Hence, when we re-run this script with the setting turned down to
50%, the output changes:

$ python3 mostly-blank.py | structa --empty-threshold 50%
[str range="".."99"]

Note

For those slightly confused by the above output: structa hasn’t lost the
“100” value, but because it’s now considered a string (not a string of
integers), “100” sorts before “99” alphabetically.

Fields or Tables (--field-threshold)

The next major knob that can be twiddled in structa is the structa
--field-threshold. This is used to distinguish between mappings that act as a
“table” (mapping keys to records) and mappings that act as a record (mapping
field-names, typically strings, to their values).

To illustrate the difference between these, consider the following script:

simple-fields.py

import sys
import json
import random

json.dump({
 str(flight_id): {
 "flight_id": flight_id,
 "passengers": random.randint(50, 200),
 "from": random.choice([
 "MAN", "LON", "LHR", "ABZ", "AMS", "AUS", "BCN",
 "BER", "BHX", "BRU", "CHI", "ORK", "DAL", "EDI",
]),
 }
 for flight_id in range(200)
}, sys.stdout)

The generates a JSON file containing a mapping of mappings which looks
something like this snippet (but with a lot more output):

{
 "0": { "flight_id": 0, "passengers": 53, "from": "BHX" },
 "1": { "flight_id": 1, "passengers": 157, "from": "AMS" },
 "2": { "flight_id": 2, "passengers": 118, "from": "DAL" },
 "3": { "flight_id": 3, "passengers": 111, "from": "MAN" },
 "4": { "flight_id": 4, "passengers": 192, "from": "BRU" },
 "5": { "flight_id": 5, "passengers": 69, "from": "DAL" },
 "6": { "flight_id": 6, "passengers": 147, "from": "LON" },
 "7": { "flight_id": 7, "passengers": 187, "from": "LON" },
 "8": { "flight_id": 8, "passengers": 171, "from": "AMS" },
 "9": { "flight_id": 9, "passengers": 89, "from": "DAL" },
 "10": { "flight_id": 10, "passengers": 169, "from": "LHR" },
 // lots more output...
}

The outer mapping is what structa would consider a “table” since it maps keys
(in this case a string representation of an integer) to records. The inner
mappings are what structa would consider “records” since they map a relatively
small number of field names to values.

Note

Record fields don’t have to be simple scalar values (although they are
here); they can be complex structures including lists or indeed further
embedded records.

If structa finds mappings with more keys than the threshold, those mappings
will be treated as tables. However, if mappings are found with fewer (or equal)
keys to the threshold, they will be analyzed as records. It’s a rather
arbitrary value that (unfortunately) usually requires some fore-knowledge of
the data being analyzed. However, it’s usually quite easy to spot when the
threshold is wrong, as we’ll see.

First, let’s take a look at what happens when the threshold is set correctly.
When passed to structa, with the default field threshold of 20, we see the
following output:

$ python3 simple-fields.py | structa
{
 str of int range=0..199 pattern="d": {
 'flight_id': int range=0..199,
 'from': str range="ABZ".."ORK" pattern="Iii",
 'passengers': int range=50..200
 }
}

This indicates that structa has recognized the data as consisting of a mapping
(indicated by the surrounding braces), which is keyed by a decimal string
representation of an integer (in the range 0 to 199), and the values of which
are another mapping with the keys “flight_id”, “from”, and “passengers”.

The reason the inner mappings were treated as a set of records was because all
those mappings had less than 20 entries. The outer mapping had more than 20
entries (200 in this case) and thus was treated as a table.

What happens if we force the field threshold down so low that the inner
mappings are also treated as a table?

$ python3 simple-fields.py | structa --field-threshold 2
{
 str of int range=0..199 pattern="d": { str range="flight_id".."passengers": value }
}

The inner mappings are now defined simply as mappings of strings (in the range
“bar” to “id”, sorted alphabetically) which map to “value” (an arbitrary mix of
types). Anytime you see a mapping of { str: value } in structa’s output,
it’s a fairly good clue that structa --field-threshold might be
too low.

Merging structures (--merge-threshold)

Whitespace

Real World Data

Warning

Big fat “unfinished” warning: structa is still very much incomplete at this
time and there’s plenty of rough edges (like not showing CSV column
titles).

If you run into unfinished stuff, do check the issues first as I may
have a ticket for that already. If you run into genuinely “implemented but
broken” stuff, please do file an issue; it’s these things I’m most
interested in at this stage.

Pre-requisites

You’ll need the following to start this tutorial:

	A structa installation; see Installation for more information on this.

	A Python 3 installation; given that structa requires this to run at all, if
you’ve got structa installed, you’ve got this too. However, it’ll help
enormously if Python is in your system’s “PATH” so that you can run python
scripts at the command line.

	The scipy library must be installed for the scripts we’re going to be
using to generate data. On Debian/Ubuntu systems you can run the following:

$ sudo apt install python3-scipy

On Windows, or if you’re running in a virtual environment, you should run the
following:

$ pip install scipy

	Some basic command line knowledge. In particular, it’ll help if you’re
familiar with shell redirection and piping (note: while that link is on
askubuntu.com the contents are equally applicable to the vast majority of
UNIX shells, and even to Windows’ cmd!)

“Real World” Data

For this tutorial, we’ll use a custom made data-set which will allow us to
tweak things and see what’s going on under structa’s hood a bit more easily.

The following script generates a fairly sizeable JSON file (~11MB) apparently
recording various air quality readings from places which bear absolutely no
resemblance whatsoever to my adoptive home city (ahem):

air-quality.py

import sys
import json
import random
import datetime as dt
from scipy.stats import skewnorm

readings = {
 # stat: (min, max),
 'O3': (0, 50),
 'NO': (0, 200),
 'NO2': (0, 100),
 'PM10': (0, 100),
 'PM2.5': (0, 100),
}

locations = {
 # location: {stat: (skew, scale), ...}
 'Mancford Peccadillo': {
 'O3': (0, 1),
 'NO': (5, 1),
 'NO2': (0, 1),
 'PM10': (10, 3),
 'PM2.5': (10, 1),
 },
 'Mancford Shartson': {
 'O3': (-10, 1),
 'NO': (10, 1),
 'NO2': (0, 1),
 },
 'Salport': {
 'NO': (10, 1),
 'NO2': (-10, 1/2),
 'PM10': (5, 1/2),
 'PM2.5': (5, 1/2),
 },
 'Prestchester': {
 'O3': (1, 1),
 'NO': (5, 1/2),
 'NO2': (0, 1),
 'PM10': (5, 1/2),
 'PM2.5': (10, 1/2),
 },
 'Blackshire': {
 'O3': (-10, 1),
 'NO': (50, 1/2),
 'NO2': (10, 1/2),
 'PM10': (10, 1/2),
 'PM2.5': (10, 1/2),
 },
 'St. Wigpools': {
 'O3': (0, 1),
 'NO': (10, 1),
 'NO2': (5, 3/4),
 'PM10': (5, 1/2),
 'PM2.5': (5, 1/2),
 },
}

def skewfunc(min, max, a=0, scale=1):
 s = skewnorm(a)
 real_min = s.ppf(0.0001)
 real_max = s.ppf(0.9999)
 real_range = real_max - real_min
 res_range = max - min
 def skewrand():
 return min + res_range * scale * (s.rvs() - real_min) / real_range
 return skewrand

generators = {
 location: {
 reading: skewfunc(read_min, read_max, skew, scale)
 for reading, params in loc_readings.items()
 for read_min, read_max in (readings[reading],)
 for skew, scale in (params,)
 }
 for location, loc_readings in locations.items()
}

timestamps = [
 dt.datetime(2020, 1, 1) + dt.timedelta(hours=n)
 for n in range(10000)
]

data = {
 location: {
 'euid': 'GB{:04d}A'.format(random.randint(200, 2000)),
 'ukid': 'UKA{:05d}'.format(random.randint(100, 800)),
 'lat': random.random() + 53.0,
 'long': random.random() - 3.0,
 'alt': random.randint(5, 100),
 'readings': {
 reading: {
 timestamp.isoformat(): loc_gen()
 for timestamp in timestamps
 }
 for reading, loc_gen in loc_gens.items()
 }
 }
 for location, loc_gens in generators.items()
}

json.dump(data, sys.stdout)

If you run the script it will output JSON on stdout, which you can redirect to
a file (or straight to structa, but given the script takes a while to run you
may wish to capture the output to a file for experimentation purposes). Passing
the output to structa should produce output something like this:

$ python3 air-quality.py > air-quality.json
$ structa air-quality.json
{
 str range="Blackshire".."St. Wigpools": {
 'alt': int range=31..85,
 'euid': str range="GB1012A".."GB1958A" pattern="GB1[0-139][13-58][2-37-9]A",
 'lat': float range=53.29812..53.6833,
 'long': float range=-2.901626..-2.362118,
 'readings': {
 str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-5.634479..335.6384 }
 },
 'ukid': str range="UKA00129".."UKA00713" pattern="UKA00[1-24-57][1-38][0-13579]"
 }
}

Note

It should be notable that the output of structa looks rather similar to the
end of the air-quality.py script, where the “data” variable that is
ultimately dumped is constructed. This neatly illustrates the purpose of
structa: to summarize repeating structures in a mass of hierarchical data.

Looking at this output we can see that the data consists of a mapping (or
Javascript “object”) at the top level, keyed by strings in the range
“Blackshire” to “St. Wigpools” (when sorted).

Under these keys are more mappings which have six keys (which structa has
displayed in alphabetical order for ease of reading):

	“alt” which maps to an integer in some range (in the example above 31 to 85,
but this will likely be different for you)

	“euid” which maps to a string which always started with “GB” and is followed
by several numerals

	“lat” which maps to a floating point value around 53

	“long” which maps to another floating point roughly around -2

	“ukid” which maps to a string always starting with UKA00 followed by several
numerals

	And finally, “readings” which maps to another dictionary of strings …

	Which maps to another dictionary which is keyed by timestamps in string
format, which map to floating point values

If you have a terminal capable of ANSI codes, you may note that types are
displayed in a different color (to distinguish them from literals like the
“ukid” and “euid” keys), as are patterns within fixed length strings, and
various keywords like “range=”.

You may also notice that several of the types (definitely the outer “str”, but
possibly other types within the top-level dictionary) are underlined. This
indicates that these values are unique throughout the entire dataset
(suitable as top-level keys if entered into a database).

Optional Keys

Let’s explore how structa handles various “problems” in the data. Firstly,
we’ll make a copy of our script and add a chunk of code to remove approximately
half of the altitude readings:

$ cp air-quality.py air-quality-opt.py
$ editor air-quality-opt.py

air-quality-opt.py

data = {
 location: {
 'euid': 'GB{:04d}A'.format(random.randint(200, 2000)),
 'ukid': 'UKA{:05d}'.format(random.randint(100, 800)),
 'lat': random.random() + 53.0,
 'long': random.random() - 3.0,
 'alt': random.randint(5, 100),
 'readings': {
 reading: {
 timestamp.isoformat(): loc_gen()
 for timestamp in timestamps
 }
 for reading, loc_gen in loc_gens.items()
 }
 }
 for location, loc_gens in generators.items()
}

for location in data:
 if random.random() < 0.5:
 del data[location]['alt']

json.dump(data, sys.stdout)

What does structa make of this?

$ python3 air-quality-opt.py > air-quality-opt.json
$ structa air-quality-opt.json
{
 str range="Blackshire".."St. Wigpools": {
 'alt'?: int range=31..85,
 'euid': str range="GB1012A".."GB1958A" pattern="GB1[0-139][13-58][2-37-9]A",
 'lat': float range=53.29812..53.6833,
 'long': float range=-2.901626..-2.362118,
 'readings': {
 str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-5.634479..335.6384 }
 },
 'ukid': str range="UKA00129".."UKA00713" pattern="UKA00[1-24-57][1-38][0-13579]"
 }
}

Note that a question-mark has now been appended to the “alt” key in the
second-level dictionary (if your terminal supports color codes, this should
appear in red). This indicates that the “alt” key is optional and not present
in every single dictionary at that level.

“Bad” Data

Next, we’ll make another script (a copy of air-quality-opt.py), which
adds some more code to “corrupts” some of the timestamps:

$ cp air-quality-opt.py air-quality-bad.py
$ editor air-quality-bad.py

air-quality-bad.py

for location in data:
 if random.random() < 0.5:
 reading = random.choice(list(data[location]['readings']))
 date = random.choice(list(data[location]['readings'][reading]))
 value = data[location]['readings'][reading].pop(date)
 data[location]['readings'][reading]['2020-02-31T12:34:56'] = value

json.dump(data, sys.stdout)

What does structa make of this?

$ python3 air-quality.py > air-quality-bad.json
$ structa air-quality-bad.json
{
 str range="Blackshire".."St. Wigpools": {
 'alt'?: int range=31..85,
 'euid': str range="GB1012A".."GB1958A" pattern="GB1[0-139][13-58][2-37-9]A",
 'lat': float range=53.29812..53.6833,
 'long': float range=-2.901626..-2.362118,
 'readings': {
 str range="NO".."PM2.5": { str of timestamp range=2020-01-01 00:00:00..2021-02-20 15:00:00 pattern="%Y-%m-%dT%H:%M:%S": float range=-5.634479..335.6384 }
 },
 'ukid': str range="UKA00129".."UKA00713" pattern="UKA00[1-24-57][1-38][0-13579]"
 }
}

Apparently nothing! It may seem odd that structa raised no errors, or even
warnings when encountering subtly incorrect data. One might (incorrectly)
assume that structa just thinks anything that vaguely looks like a timestamp in
a string is such.

For the avoidance of doubt, this is not the case: structa does attempt to
convert timestamps correctly and does not think February 31st is a valid date
(unlike certain databases!). However, structa does have a “bad threshold”
setting (structa --bad-threshold) which means not all data in a given
sequence has to match the pattern under test.

Whitespace

By default, structa strips whitespace from strings prior to analysis. This is
probably not necessary for the vast majority of modern datasets, but it’s a
reasonably safe default, and can be controlled with the structa
--strip-whitespace and structa --no-strip-whitespace options in any
case.

One other option that is affected by whitespace stripping is the “empty”
threshold. This is the proportion of string values that are permitted to be
empty (and thus ignored) when analysing a field of data. By default, this is
99% meaning the vast majority of a given field can be blank, and structa will
still analyze the remaining strings to determine whether they represent
integers, datetimes, etc.

If the proportion of blank strings in a field exceeds the empty threshold, the
field will simply be marked as a string without any further processing.

For example:

examples/mostly-blank.py

import sys
import json
import random

json.dump([
 '' if random.random() < 0.7 else str(random.randint(0, 100))
 for i in range(10000)
], sys.stdout)

This script outputs (as JSON) a list of strings of integers, roughly 70% of
which will be blank. By default, structa is happy with this:

$ python3 mostly-blank.py | structa
[str of int range=0..100 pattern="d"]

However, if we force the empty threshold down below 70%:

Command Line Reference

Synopsis

structa [-h] [--version] [-f {auto,csv,json,yaml}] [-e ENCODING]
 [--encoding-strict] [--no-encoding-strict]
 [-F INT] [-M NUM] [-B NUM] [-E NUM] [--str-limit NUM]
 [--hide-count] [--show-count] [--hide-lengths] [--show-lengths]
 [--hide-pattern] [--show-pattern]
 [--hide-range] [--show-range {hidden,limits,median,quartiles,graph}]
 [--hide-samples] [--show-samples]
 [--min-timestamp WHEN] [--max-timestamp WHEN]
 [--max-numeric-len LEN] [--sample-bytes SIZE]
 [--strip-whitespace] [--no-strip-whitespace]
 [--csv-format FIELD[QUOTE]] [--yaml-safe] [--no-yaml-safe]
 [file [file ...]]

Positional Arguments

	
file

	The data-file(s) to analyze; if this is - or unspecified then stdin will be
read for the data; if multiple files are specified all will be read and
analyzed as an array of similar structures

Optional Arguments

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-f {auto,csv,json,yaml}, --format {auto,csv,json,yaml}

	The format of the data file; if this is unspecified, it will be guessed
based on the first bytes of the file; valid choices are auto (the default),
csv, or json

	
-e ENCODING, --encoding ENCODING

	The string encoding of the file, e.g. utf-8 (default: auto). If “auto” then
the file will be sampled to determine the encoding (see
--sample-bytes)

	
--encoding-strict, --no-encoding-strict

	Controls whether character encoding is strictly enforced and will result in
an error if invalid characters are found during analysis. If disabled, a
replacement character will be inserted for invalid sequences. The default
is strict decoding

	
-F INT, --field-threshold INT

	If the number of distinct keys in a map, or columns in a tuple is less than
this then they will be considered distinct fields instead of being lumped
under a generic type like str (default: 20)

	
-M NUM, --merge-threshold NUM

	The proportion of mapping fields which must match other mappings for them
to be considered potential merge candidates (default: 50%)

	
-B NUM, --bad-threshold NUM

	The proportion of string values which are allowed to mismatch a pattern
without preventing the pattern from being reported; the proportion of “bad”
data permitted in a field (default: 1%)

	
-E NUM, --empty-threshold NUM

	The proportion of string values permitted to be empty without preventing
the pattern from being reported; the proportion of “empty” data permitted
in a field (default: 99%)

	
--str-limit NUM

	The length beyond which only the lengths of strs will be reported; below
this the actual value of the string will be displayed (default: 20)

	
--hide-count, --show-count

	If set, show the count of items in containers, the count of unique scalar
values, and the count of all sample values (if --show-samples is
set). If disabled, counts will be hidden

	
--hide-lengths, --show-lengths

	If set, display the range of lengths of string fields in the same format as
specified by --show-range

	
--hide-pattern, --show-pattern

	If set, show the pattern determined for fixed length string fields. If
disabled, pattern information will be hidden

	
--hide-range, --show-range {hidden,limits,median,quartiles,graph}

	Show the range of numeric (and temporal) fields in a variety of forms. The
default is ‘limits’ which simply displays the minimum and maximum; ‘median’
includes the median between these; ‘quartiles’ shows all three quartiles
between the minimum and maximum; ‘graph’ displays a crude chart showing the
positions of the quartiles relative to the limits. Use
--hide-range to hide all range info

	
--hide-samples, --show-samples

	If set, show samples of non-unique scalar values including the most and
least common values. If disabled, samples will be hidden

	
--min-timestamp WHEN

	The minimum timestamp to use when guessing whether floating point fields
represent UNIX timestamps (default: 20 years). Can be specified as an
absolute timestamp (in ISO-8601 format) or a duration to be subtracted from
the current timestamp

	
--max-timestamp WHEN

	The maximum timestamp to use when guessing whether floating point fields
represent UNIX timestamps (default: 10 years). Can be specified as an
absolute timestamp (in ISO-8601 format) or a duration to be added to the
current timestamp

	
--max-numeric-len LEN

	The maximum number of characters that a number, integer or floating-point,
may use in its representation within the file. Defaults to 30

	
--sample-bytes SIZE

	The number of bytes to sample from the file for the purposes of encoding
and format detection. Defaults to 1m. Typical suffixes of k, m, g, etc. may
be specified

	
--strip-whitespace, --no-strip-whitespace

	Controls whether leading and trailing found in strings in the will be left
alone and thus included or excluded in any data-type analysis. The default
is to strip whitespace

	
--csv-format FIELD[QUOTE]

	The characters used to delimit fields and strings in a CSV file. Can be
specified as a single character which will be used as the field delimiter,
or two characters in which case the second will be used as the string
quotation character. Can also be “auto” which indicates the delimiters
should be detected. Bear in mind that some characters may require quoting
for the shell, e.g. ‘;”’

	
--yaml-safe, --no-yaml-safe

	Controls whether the “safe” or “unsafe” YAML loader is used to parse YAML
files. The default is the “safe” parser. Only use --no-yaml-safe
if you trust the source of your data

Recipes

The following sections cover analyzing various common data scenarios with
structa, and how structa’s various options should be set to handle them.

Analyzing from a URL

While structa itself can’t read URLs directly, the fact you can pipe data to
it makes it ideal for use with something like curl:

$ curl -s https://piwheels.org/packages.json | structa
[
 (
 str,
 int range=0..32.8K,
 int range=0..1.7M
)
]

Dealing with large records

In the Getting Started we saw the following script, which generates a
mapping of mappings, for the purposes of learning about structa
--field-threshold:

simple-fields.py

import sys
import json
import random

json.dump({
 str(flight_id): {
 "flight_id": flight_id,
 "passengers": random.randint(50, 200),
 "from": random.choice([
 "MAN", "LON", "LHR", "ABZ", "AMS", "AUS", "BCN",
 "BER", "BHX", "BRU", "CHI", "ORK", "DAL", "EDI",
]),
 }
 for flight_id in range(200)
}, sys.stdout)

We saw what happens when the threshold is too low:

$ python3 simple-fields.py | structa --field-threshold 2
{
 str of int range=0..199 pattern="d": { str range="flight_id".."passengers": value }
}

What happens if the threshold is set too high, resulting in the outer mapping
being treated as a (very large!) record?

$ python3 simple-fields.py | structa --field-threshold 300
{
 str of int range=0..199 pattern="d": {
 'flight_id': int range=0..199,
 'from': str range="ABZ".."ORK" pattern="[A-EL-MO][A-EHMORU][IK-LNR-SUXZ]",
 'passengers': int range=50..199
 }
}

Curiously it seems to have worked happily anyway, although the pattern of the
“from” field is now considerably more complex. The reasons for this are
relatively complicated, but has to do with a later pass of structa’s algorithm
merging common sub-structures of records. The merging process unfortunately
handles certain things (like the merging of string field patterns) rather
crudely.

Hence, while it’s generally safe to bump structa --field-threshold up
quite high whenever you need to, be aware that it will:

	significantly slow down analysis of large files (because the merging process
is quite slow)

	complicate the pattern analysis of repeated string fields and a few other
things (e.g. string representations of date-times)

In other words, whenever you find yourself in a situation where you need to
bump up the field threshold, a reasonable procedure to follow is:

	Bump the threshold very high (e.g. 1000) and run the analysis with
structa --show-count enabled.

	Run the analysis again with the field threshold set below the count of the
outer container(s), but above the count of the inner record mappings

The first run will probably be quite slow, but the second run will be much
faster and will produce better output.

API Reference

In addition to being a utility, structa can also be used as an API from Python
(either in a script, or just at the console).

The primary class of interest will generally be
Analyzer in the structa.analyzer module, but
it is important to understand the various classes in the structa.types
module to interpret the output of the analyzer.

Modules

	structa.analyzer

	structa.chars

	structa.collections

	structa.conversions

	structa.errors

	structa.format

	structa.source

	structa.types

	structa.xml

structa.analyzer

The structa.analyzer module contains the Analyzer class which
is the primary entry point for using structa’s as an API. It can be constructed
without any arguments, and the analyze() method can be
immediately used to determine the structure of some data. The
merge() method can be used to further refine the returned
structure, and measure() can be used before-hand if you wish to
use the progress callback to track the progress of long analysis runs.

A typical example of basic usage would be:

from structa.analyzer import Analyzer

data = {
 str(i): i
 for i in range(1000)
}
an = Analyzer()
structure = an.analyze(data)
print(structure)

The structure returned by analyze() (and by
merge()) will be an instance of one of the classes in the
structa.types module, all of which have sensible str and
repr() output.

A more complete example, using Source to figure out
the source format and encoding:

from structa.analyzer import Analyzer
from structa.source import Source
from urllib.request import urlopen

with urlopen('https://usn.ubuntu.com/usn-db/database-all.json') as f:
 src = Source(data)
 an = Analyzer()
 an.measure(src.data)
 structure = an.analyze(src.data)
 structure = an.merge(structure)
 print(structure)

structa.chars

The structa.chars module provides classes and constants for defining
and manipulating character classes (in the sense of regular expressions).
The primary class of interest is CharClass, but most uses can likely
be covered by the set of constants defined in the module.

Constants

	
structa.chars.oct_digit

	Represents any valid digit in base 8 (octal).

	
structa.chars.dec_digit

	Represents any valid digit in base 10 (decimal).

	
structa.chars.hex_digit

	Represents any valid digit in base 16 (hexidecimal).

	
structa.chars.ident_first

	Represents any character which is valid as the first character of a
Python identifier.

	
structa.chars.ident_char

	Represents any character which is valid within a Python identifier.

	
structa.chars.any_char

	Represents any valid character (an instance of AnyChar).

structa.collections

structa.conversions

structa.errors

The structa.errors module defines all the custom exception and warning
classes used in structa.

structa.format

The structa.format module contains various simple routines for “nicely”
formatting certain structures for output.

structa.source

structa.types

The structa.types module defines the class hierarchy used to represent
the structural types of analyzed data. The root of the hierarchy is the
Type class. The rest of the hierarchy is illustrated in the chart
below:

[image: _images/types.svg]

structa.xml

The structa.xml module provides methods for generating and manipulating
XML, primarily in the form of xml.etree.ElementTree objects. The main
class of interest is ElementFactory, which can be used to generate
entire element-tree documents in a functional manner.

The xml() function can be used in a similar manner to str or
repr() to generate XML representations of supported objects (most
classes within structa.types support this). Finally,
get_transform() can be used to obtain XSLT trees defined by structa
(largely for display purposes).

Development

The main GitHub repository for the project can be found at:

https://github.com/waveform80/structa

The project is currently in its early stages, but is quite useable and the
documentation, while incomplete, should be useful to both users and developers
wishing to hack on the project itself. The test suite is also nearing full
coverage.

Development installation

If you wish to develop structa, obtain the source by cloning the GitHub
repository and then use the “develop” target of the Makefile which will install
the package as a link to the cloned repository allowing in-place development.
The following example demonstrates this method within a virtual Python
environment:

$ sudo apt install build-essential git virtualenvwrapper

After installing virtualenvwrapper you’ll need to restart your shell before
commands like mkvirtualenv will operate correctly. Once you’ve
restarted your shell, continue:

$ cd
$ mkvirtualenv -p /usr/bin/python3 structa
$ workon structa
(structa) $ git clone https://github.com/waveform80/structa.git
(structa) $ cd structa
(structa) $ make develop

To pull the latest changes from git into your clone and update your
installation:

$ workon structa
(structa) $ cd ~/structa
(structa) $ git pull
(structa) $ make develop

To remove your installation, destroy the sandbox and the clone:

(structa) $ deactivate
$ rmvirtualenv structa
$ rm -rf ~/structa

Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape
is used for conversion of SVGs to other formats, Graphviz is used for rendering
certain charts, and TeX Live is required for building PDF output. The following
command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
 texlive-fonts-recommended texlive-xetex graphviz inkscape \
 python3-sphinx python3-sphinx-rtd-theme latexmk xindy

Once these are installed, you can use the “doc” target to build the
documentation in all supported formats (HTML, ePub, and PDF):

$ workon structa
(structa) $ cd ~/structa
(structa) $ make doc

However, the easiest way to develop the documentation is with the “preview”
target which will build the HTML version of the docs, and start a web-server to
preview the output. The web-server will then watch for source changes (in both
the documentation source, and the application’s source) and rebuild the HTML
automatically as required:

$ workon structa
(structa) $ cd ~/structa
(structa) $ make preview

The HTML output is written to build/html while the PDF output
goes to build/latex.

Test suite

If you wish to run the structa test suite, follow the instructions in
Development installation above and then make the “test” target within the sandbox:

$ workon structa
(structa) $ cd ~/structa
(structa) $ make test

The test suite is also setup for usage with the tox utility, in
which case it will attempt to execute the test suite with all supported
versions of Python. If you are developing under Ubuntu you may wish to look
into the Dead Snakes PPA in order to install old/new versions of Python; the
tox setup should work with the version of tox shipped with Ubuntu Focal, but
more features (like parallel test execution) are available with later versions.

For example, to execute the test suite under tox, skipping interpreter versions
which are not installed:

$ tox -s

To execute the test suite under all installed interpreter versions in parallel,
using as many parallel tasks as there are CPUs, then displaying a combined
report of coverage from all environments:

$ tox -p auto -s
$ coverage combine .coverage.py*
$ coverage report

Changelog

Release 0.2 (2021-08-17)

	Better tuple analysis (#4) which was a pre-requisite for…

	Added CSV support (#5)

	Added some pretty progress output (#6)

	Prettier output (#8)

	Added documentation (#9)

	Added YAML support (#10)

	Better elimination of common sub-trees (#12)

	Multi-file input support (#15)

Release 0.1 (2018-12-17)

	Initial commit of something that works … ish

License

This file is part of structa.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301 USA or see
<https://www.gnu.org/licenses/>.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 structa	

 	
 	
 structa.analyzer	

 	
 	
 structa.chars	

 	
 	
 structa.collections	

 	
 	
 structa.conversions	

 	
 	
 structa.errors	

 	
 	
 structa.format	

 	
 	
 structa.source	

 	
 	
 structa.types	

 	
 	
 structa.xml	

Index

 Symbols
 | A
 | D
 | F
 | H
 | I
 | M
 | O
 | S

Symbols

 	
 	
 --bad-threshold NUM

 	structa command line option

 	
 --csv-format FIELD[QUOTE]

 	structa command line option

 	
 --empty-threshold NUM

 	structa command line option

 	
 --encoding ENCODING

 	structa command line option

 	
 --encoding-strict

 	structa command line option

 	
 --field-threshold INT

 	structa command line option

 	
 --format {auto,csv,json,yaml}

 	structa command line option

 	
 --help

 	structa command line option

 	
 --hide-count

 	structa command line option

 	
 --hide-lengths

 	structa command line option

 	
 --hide-pattern

 	structa command line option

 	
 --hide-range

 	structa command line option

 	
 --hide-samples

 	structa command line option

 	
 --max-numeric-len LEN

 	structa command line option

 	
 --max-timestamp WHEN

 	structa command line option

 	
 --merge-threshold NUM

 	structa command line option

 	
 --min-timestamp WHEN

 	structa command line option

 	
 --no-encoding-strict

 	structa command line option

 	
 --no-strip-whitespace

 	structa command line option

 	
 	
 --no-yaml-safe

 	structa command line option

 	
 --sample-bytes SIZE

 	structa command line option

 	
 --show-count

 	structa command line option

 	
 --show-lengths

 	structa command line option

 	
 --show-pattern

 	structa command line option

 	
 --show-range {hidden,limits,median,quartiles,graph}

 	structa command line option

 	
 --show-samples

 	structa command line option

 	
 --str-limit NUM

 	structa command line option

 	
 --strip-whitespace

 	structa command line option

 	
 --version

 	structa command line option

 	
 --yaml-safe

 	structa command line option

 	
 -B NUM

 	structa command line option

 	
 -e ENCODING

 	structa command line option

 	
 -E NUM

 	structa command line option

 	
 -F INT

 	structa command line option

 	
 -f {auto,csv,json,yaml}

 	structa command line option

 	
 -h

 	structa command line option

 	
 -M NUM

 	structa command line option

A

 	
 	any_char (in module structa.chars)

D

 	
 	dec_digit (in module structa.chars)

F

 	
 	
 file

 	structa command line option

H

 	
 	hex_digit (in module structa.chars)

I

 	
 	ident_char (in module structa.chars)

 	
 	ident_first (in module structa.chars)

M

 	
 	
 module

 	structa.analyzer

 	structa.chars

 	structa.collections

 	structa.conversions

 	structa.errors

 	structa.format

 	structa.source

 	structa.types

 	structa.xml

O

 	
 	oct_digit (in module structa.chars)

S

 	
 	
 structa command line option

 	--bad-threshold NUM

 	--csv-format FIELD[QUOTE]

 	--empty-threshold NUM

 	--encoding ENCODING

 	--encoding-strict

 	--field-threshold INT

 	--format {auto,csv,json,yaml}

 	--help

 	--hide-count

 	--hide-lengths

 	--hide-pattern

 	--hide-range

 	--hide-samples

 	--max-numeric-len LEN

 	--max-timestamp WHEN

 	--merge-threshold NUM

 	--min-timestamp WHEN

 	--no-encoding-strict

 	--no-strip-whitespace

 	--no-yaml-safe

 	--sample-bytes SIZE

 	--show-count

 	--show-lengths

 	--show-pattern

 	--show-range {hidden,limits,median,quartiles,graph}

 	--show-samples

 	--str-limit NUM

 	--strip-whitespace

 	--version

 	--yaml-safe

 	-B NUM

 	-e ENCODING

 	-E NUM

 	-F INT

 	-f {auto,csv,json,yaml}

 	-h

 	-M NUM

 	file

 	
 	
 structa.analyzer

 	module

 	
 structa.chars

 	module

 	
 structa.collections

 	module

 	
 structa.conversions

 	module

 	
 structa.errors

 	module

 	
 structa.format

 	module

 	
 structa.source

 	module

 	
 structa.types

 	module

 	
 structa.xml

 	module

 nav.xhtml

 Table of Contents

 		
 structa

 		
 Installation

 		
 Ubuntu Linux

 		
 Microsoft Windows

 		
 Other Platforms

 		
 Getting Started

 		
 Pre-requisites

 		
 Basic Usage

 		
 Bad Data (–bad-threshold)

 		
 Missing Data (–empty-threshold)

 		
 Fields or Tables (–field-threshold)

 		
 Merging structures (–merge-threshold)

 		
 Whitespace

 		
 Real World Data

 		
 Pre-requisites

 		
 “Real World” Data

 		
 Optional Keys

 		
 “Bad” Data

 		
 Whitespace

 		
 Command Line Reference

 		
 Synopsis

 		
 Positional Arguments

 		
 Optional Arguments

 		
 Recipes

 		
 Analyzing from a URL

 		
 Dealing with large records

 		
 API Reference

 		
 Modules

 		
 structa.analyzer

 		
 structa.chars

 		
 structa.collections

 		
 structa.conversions

 		
 structa.errors

 		
 structa.format

 		
 structa.source

 		
 structa.types

 		
 structa.xml

 		
 Development

 		
 Development installation

 		
 Building the docs

 		
 Test suite

 		
 Changelog

 		
 Release 0.2 (2021-08-17)

 		
 Release 0.1 (2018-12-17)

 		
 License

_static/file.png

_static/minus.png

_static/plus.png

